A236630 Irregular triangle T(n,k) of alternating sums of squares of entries in the rows in the triangle of A235791, read by rows.
1, 4, 9, 8, 16, 15, 25, 21, 36, 32, 33, 49, 40, 41, 64, 55, 56, 81, 65, 69, 100, 84, 88, 87, 121, 96, 100, 99, 144, 119, 128, 127, 169, 133, 142, 141, 196, 160, 169, 165, 225, 176, 192, 188, 189, 256, 207, 223, 219, 220, 289, 225, 241, 237, 238
Offset: 1
Examples
Triangle begins: 1; 4; 9, 8; 16, 15; 25, 21; 36, 32, 33; 49, 40, 41; 64, 55, 56; 81, 65, 69; 100, 84, 88, 87; 121, 96, 100, 99; 144, 119, 128, 127; 169, 133, 142, 141; 196, 160, 169, 165; 225, 176, 192, 188, 189; 256, 207, 223, 219, 220; 289, 225, 241, 237, 238; ... From _Omar E. Pol_, Apr 20 2024: (Start) Illustration of the 6th row as the area of a polygon (or the number of cells) in the fourth quadrant: . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . | | | | | | . | | | | | | . | | | | | | . | | | _ _| | _| . | | | | | _| . |_ _ _ _ _ _| |_ _ _ _| |_ _ _ _| . . 36 36 - 4 = 32 36 - 4 + 1 = 33 . (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10075 (rows n = 1..500, flattened)
- Hartmut F. W. Hoft, Proof that right border of triangle is A024916
Crossrefs
Programs
-
Mathematica
Map[Accumulate, Table[(-2 Boole[EvenQ[k]] + 1)*Ceiling[(n + 1)/k - (k + 1)/2]^2, {n, 20}, {k, Floor[(Sqrt[8*n + 1] - 1)/2]}]] // Flatten (* Michael De Vlieger, Apr 30 2024, after Hartmut F. W. Hoft at A235791 *)
Formula
From Hartmut F. W. Hoft, Apr 30 2024: (Start)
Extensions
New name from Hartmut F. W. Hoft, Apr 27 2024
0 removed, offset changed and minor edits from Omar E. Pol, Apr 28 2024
Comments