A236680 Dimension of the space of spinors in n-dimensional real space.
1, 2, 4, 4, 4, 4, 8, 8, 16, 32, 64, 64, 64, 64, 128, 128, 256, 512, 1024, 1024, 1024, 1024, 2048, 2048, 4096, 8192, 16384, 16384, 16384, 16384, 32768, 32768, 65536, 131072, 262144, 262144, 262144, 262144, 524288, 524288, 1048576, 2097152, 4194304
Offset: 1
Links
- John Baez, John Baez on the number 8, 2008 Rankin Lecture (see frame at 38 minutes and 5 seconds).
- Index entries for linear recurrences with constant coefficients, signature (2,-2,0,4,-8,8).
Programs
-
Mathematica
LinearRecurrence[{2,-2,0,4,-8,8},{1,2,4,4,4,4},50] (* Harvey P. Dale, May 05 2019 *)
-
PARI
Vec(x*(1+2*x^2+4*x^5)/((1-2*x^2)*(1+2*x^2)*(1-2*x+2*x^2)) + O(x^100)) \\ Colin Barker, Jan 30 2014
Formula
a(n) = 16*a(n-8) = 2*a(n-1) - 2*a(n-2) + 4*a(n-4) - 8*a(n-5) + 8*a(n-6).
G.f.: x*(1+2*x^2+4*x^5)/((1-2*x^2)*(1+2*x^2)*(1-2*x+2*x^2)). - Colin Barker, Jan 30 2014
Comments