A236693 Numbers k such that 2^sigma(k) == 1 (mod k).
1, 3, 15, 35, 51, 65, 105, 119, 195, 255, 315, 323, 357, 377, 455, 459, 585, 595, 663, 969, 1045, 1071, 1105, 1131, 1189, 1365, 1455, 1469, 1485, 1547, 1615, 1785, 1799, 1885, 1887, 1911, 2261, 2295, 2385, 2639, 2795, 2907, 3135, 3145, 3185, 3213, 3315, 3339
Offset: 1
Examples
2^sigma(15) = 2^24 = 16777216 is congruent to 1 (mod 15), so 15 is a term of the sequence.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..10000
- Florian Luca, Positive integers n such that n| a^sigma(n) - 1, Novi Sad Journal of Mathematics, Vol 33, No. 2 (2003), pp. 49-66.
Programs
-
Mathematica
l = {1}; For[i = 1, i <= 10^4, i++, If[Mod[2^DivisorSigma[1, i], i] == 1, l = Append[l, i]]]; l
-
PARI
s=[1]; for(n=1, 10000, if(2^sigma(n)%n==1, s=concat(s, n))); s \\ Colin Barker, Jan 30 2014
-
PARI
isok(n) = Mod(2, n)^sigma(n)==1; \\ Altug Alkan, Sep 19 2017
Extensions
a(1) = 1 added by Amiram Eldar, Sep 19 2017
Comments