A236747 Number of 0 <= k <= sqrt(n) such that n-k and n+k are both prime.
0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 0, 2, 1, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 0, 2, 1, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 0
Offset: 1
Keywords
Examples
a(3) = 1 because 3 - 0 = 3 and 3 + 0 = 3 are both prime for k = 0; a(4) = 1 because 4 - 1 = 3 and 4 + 1 = 5 are both prime for k = 1 < sqrt(4) = 2; a(5) = 2 because 5 - 0 = 5 and 5 + 0 = 5 are both prime for k = 0, 5 - 2 = 3 and 5 + 2 = 7 are both prime for k = 2 < sqrt(5).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A236767 := proc(n) local a,k ; a := 0 ; for k from 0 to floor(sqrt(n)) do if isprime(n-k) and isprime(n+k) then a := a+1 ; end if; end do: a ; end proc: seq(A236767(n),n=1..80) ; # R. J. Mathar, Dec 01 2020
-
Mathematica
Table[Length[Select[Range[0, Sqrt[n]], PrimeQ[n - #] && PrimeQ[n + #] &]], {n, 100}] (* T. D. Noe, Feb 01 2014 *)
-
PARI
a(n)=sum(k=0,sqrtint(n),isprime(n-k)&&isprime(n+k)) \\ Charles R Greathouse IV, Jan 30 2014
-
Scheme
(define (A236747 n) (add (lambda (k) (* (A010051 (- n k)) (A010051 (+ n k)))) 0 (A000196 n))) ;; The following implements sum_{i=lowlim..uplim} intfun(i): (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i))))))) ;; From Antti Karttunen, Feb 01 2014
Formula
Extensions
Terms recomputed (with corrections) by Antti Karttunen, Feb 01 2014
Comments