cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A236750 Positive integers k such that k^3 divided by the digital sum of k is a square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48, 81, 100, 144, 150, 192, 196, 200, 225, 242, 288, 300, 320, 324, 375, 400, 441, 484, 500, 512, 600, 640, 648, 700, 704, 735, 800, 832, 882, 900, 960, 1014, 1088, 1200, 1250, 1452, 1458, 1521, 1815, 2023, 2025, 2028
Offset: 1

Views

Author

Colin Barker, Jan 30 2014

Keywords

Comments

The sequence is infinite since if m = 10^(2*j) then m^3 / digitsum(m) = m^(6*k). - Marius A. Burtea, Dec 21 2018

Examples

			192 is in the sequence because the digital sum of 192 is 12, and 192^3/12 = 589824 = 768^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1500] | IsIntegral((n^3)/(&+Intseq(n))) and IsSquare((n^3)/(&+Intseq(n)))]; // Marius A. Burtea, Dec 21 2018
  • PARI
    s=[]; for(n=1, 5000, d=sumdigits(n); if(n^3%d==0 && issquare(n^3\d), s=concat(s, n))); s
    

A236751 Positive integers n such that n^3 divided by the digital sum of n is a cube.

Original entry on oeis.org

1, 8, 10, 26, 44, 62, 80, 100, 116, 134, 152, 170, 206, 224, 242, 260, 314, 332, 350, 404, 422, 440, 512, 530, 602, 620, 710, 800, 999, 1000, 1016, 1034, 1052, 1070, 1106, 1124, 1142, 1160, 1214, 1232, 1250, 1304, 1322, 1340, 1412, 1430, 1502, 1520, 1610
Offset: 1

Views

Author

Colin Barker, Jan 30 2014

Keywords

Examples

			152 is in the sequence because the digital sum of 152 is 8, and 152^3/8 = 438976 = 76^3.
		

Crossrefs

Programs

  • PARI
    s=[]; for(n=1, 3000, d=sumdigits(n); if(n^3%d==0 && ispower(n^3\d, 3), s=concat(s, n))); s

A236749 Positive integers n such that n^2 divided by the digital sum of n is a cube.

Original entry on oeis.org

1, 8, 81, 512, 1000, 2592, 6400, 8000, 10125, 19683, 20736, 34300, 35937, 36125, 46656, 59319, 74088, 81000, 123823, 125000, 157464, 185193, 268912, 279936, 328509, 373248, 421875, 431244, 469567, 474552, 481474, 512000, 592704, 658503, 795906, 804357
Offset: 1

Views

Author

Colin Barker, Jan 30 2014

Keywords

Examples

			2592 is in the sequence because the digital sum of 2592 is 18, and 2592^2/18 = 373248 = 72^3.
		

Crossrefs

Programs

  • PARI
    s=[]; for(n=1, 100000, d=sumdigits(n); if(n^2%d==0 && ispower(n^2\d, 3), s=concat(s, n))); s
Showing 1-3 of 3 results.