cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A236748 Positive integers k such that k^2 divided by the digital sum of k is a square.

Original entry on oeis.org

1, 4, 9, 10, 18, 22, 27, 36, 40, 45, 54, 63, 72, 81, 88, 90, 100, 108, 112, 117, 126, 130, 135, 144, 153, 162, 171, 180, 196, 202, 207, 216, 220, 225, 234, 243, 252, 261, 268, 270, 306, 310, 315, 324, 333, 342, 351, 360, 376, 400, 405, 414, 423, 432, 441
Offset: 1

Views

Author

Colin Barker, Jan 30 2014

Keywords

Comments

Subsequence of A028839 (sum of digits of n is a square). - Jon Perry and Michel Marcus, Oct 30 2014
A028839 is the sequence of positive integers such that n^2 divided by the sum of the digits is a rational square. For this sequence, it is required to be an integer square. - Franklin T. Adams-Watters, Oct 30 2014
The sequence is infinite since if m = 10^j then m^2 / digitsum(m) = m^2. - Marius A. Burtea, Dec 21 2018

Examples

			153 is in the sequence because the digital sum of 153 is 9, and 153^2/9 = 2601 = 51^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1500] | IsIntegral((n^2)/(&+Intseq(n))) and IsSquare((n^2)/(&+Intseq(n)))]; // Marius A. Burtea, Dec 21 2018
  • Maple
    filter:= n -> issqr(n^2/convert(convert(n,base,10),`+`)):
    select(filter, [$1..10000]); # Robert Israel, Oct 30 2014
  • Mathematica
    Select[Range[500],IntegerQ[Sqrt[#^2/Total[IntegerDigits[#]]]]&] (* Harvey P. Dale, Nov 19 2014 *)
  • PARI
    s=[]; for(n=1, 600, d=sumdigits(n); if(n^2%d==0 && issquare(n^2\d), s=concat(s, n))); s
    

A236750 Positive integers k such that k^3 divided by the digital sum of k is a square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48, 81, 100, 144, 150, 192, 196, 200, 225, 242, 288, 300, 320, 324, 375, 400, 441, 484, 500, 512, 600, 640, 648, 700, 704, 735, 800, 832, 882, 900, 960, 1014, 1088, 1200, 1250, 1452, 1458, 1521, 1815, 2023, 2025, 2028
Offset: 1

Views

Author

Colin Barker, Jan 30 2014

Keywords

Comments

The sequence is infinite since if m = 10^(2*j) then m^3 / digitsum(m) = m^(6*k). - Marius A. Burtea, Dec 21 2018

Examples

			192 is in the sequence because the digital sum of 192 is 12, and 192^3/12 = 589824 = 768^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1500] | IsIntegral((n^3)/(&+Intseq(n))) and IsSquare((n^3)/(&+Intseq(n)))]; // Marius A. Burtea, Dec 21 2018
  • PARI
    s=[]; for(n=1, 5000, d=sumdigits(n); if(n^3%d==0 && issquare(n^3\d), s=concat(s, n))); s
    

A236751 Positive integers n such that n^3 divided by the digital sum of n is a cube.

Original entry on oeis.org

1, 8, 10, 26, 44, 62, 80, 100, 116, 134, 152, 170, 206, 224, 242, 260, 314, 332, 350, 404, 422, 440, 512, 530, 602, 620, 710, 800, 999, 1000, 1016, 1034, 1052, 1070, 1106, 1124, 1142, 1160, 1214, 1232, 1250, 1304, 1322, 1340, 1412, 1430, 1502, 1520, 1610
Offset: 1

Views

Author

Colin Barker, Jan 30 2014

Keywords

Examples

			152 is in the sequence because the digital sum of 152 is 8, and 152^3/8 = 438976 = 76^3.
		

Crossrefs

Programs

  • PARI
    s=[]; for(n=1, 3000, d=sumdigits(n); if(n^3%d==0 && ispower(n^3\d, 3), s=concat(s, n))); s
Showing 1-3 of 3 results.