cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236771 a(n) = n + floor(n/2 + n^2/3).

Original entry on oeis.org

0, 1, 4, 7, 11, 15, 21, 26, 33, 40, 48, 56, 66, 75, 86, 97, 109, 121, 135, 148, 163, 178, 194, 210, 228, 245, 264, 283, 303, 323, 345, 366, 389, 412, 436, 460, 486, 511, 538, 565, 593, 621, 651, 680, 711, 742, 774, 806, 840, 873, 908, 943, 979
Offset: 0

Views

Author

Bruno Berselli, Feb 06 2014

Keywords

Comments

If a(k) is prime then k == 3, 4 or 8 (mod 12). The primes are 7, 11, 97, 109, 163, 283, 389, 593, 1129, 1987, 2039, 2713, ... .
This sequence is between A042965 and A236773.

Crossrefs

Cf. A004772; A032766: n+floor(n/2).
Cf. A042965: n+floor(1/2+n/3); A236773: n+floor(n^2/2+n^3/3).
Cf. A281333: 1+floor(n/2)+floor(n^2/3).

Programs

  • Magma
    [n+Floor(n/2+n^2/3): n in [0..60]];
  • Mathematica
    Table[n + Floor[n/2 + n^2/3], {n, 0, 60}]

Formula

G.f.: x*(1 + 3*x + 2*x^2 - 2*x^4) / ((1 + x)*(1 + x + x^2)*(1 - x)^3).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = (2*n*(2*n+9) - 2*(-1)^floor(2*(n-1)/3) + 3*(-1)^n - 5)/12.
a(n+2) - a(n) = A004772(n+4).
Also: a(n) = n + floor(n/2) + floor(n^2/3).