cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A281333 a(n) = 1 + floor(n/2) + floor(n^2/3).

Original entry on oeis.org

1, 1, 3, 5, 8, 11, 16, 20, 26, 32, 39, 46, 55, 63, 73, 83, 94, 105, 118, 130, 144, 158, 173, 188, 205, 221, 239, 257, 276, 295, 316, 336, 358, 380, 403, 426, 451, 475, 501, 527, 554, 581, 610, 638, 668, 698, 729, 760, 793, 825, 859, 893, 928, 963, 1000, 1036, 1074, 1112, 1151, 1190
Offset: 0

Views

Author

Bruno Berselli, Jan 20 2017

Keywords

Crossrefs

Subsequences: A033577, A244805 (numbers of the form 1 + k/2 + k^2/3), A212978 (second bisection).
Cf. A236771: n + floor(n/2) + floor(n^2/3).
Cf. A008619: 1 + floor(n/2); A087483: 1 + floor(n^2/3).

Programs

  • Magma
    [1 + n div 2 + n^2 div 3: n in [0..60]];
  • Maple
    A281333:=n->1 + floor(n/2) + floor(n^2/3): seq(A281333(n), n=0..100); # Wesley Ivan Hurt, Feb 09 2017
  • Mathematica
    Table[1 + Floor[n/2] + Floor[n^2/3], {n, 0, 60}]
    LinearRecurrence[{1,1,0,-1,-1,1},{1,1,3,5,8,11},80] (* Harvey P. Dale, Sep 29 2024 *)
  • Maxima
    makelist(1+floor(n/2)+floor(n^2/3), n, 0, 60);
    
  • PARI
    vector(60, n, n--; 1+floor(n/2)+floor(n^2/3))
    
  • Python
    [1+int(n/2)+int(n**2/3) for n in range(60)]
    
  • Sage
    [1+floor(n/2)+floor(n^2/3) for n in range(60)]
    

Formula

G.f.: (1 + x^2 + x^3 + x^4)/((1 + x)*(1 + x + x^2)*(1 - x)^3).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = 1 + floor(n/2 + n^2/3).
a(n) = (12*n^2 + 18*n + 4*(-1)^(2*n/3) + 4*(-1)^(-2*n/3) + 9*(-1)^n + 19)/36.
a(n) - n = a(-n).
a(6*k+r) = 12*k^2 + (4*r+3)*k + a(r), where 0 <= r <= 5. Particular cases:
a(6*k) = A244805(k+1), a(6*k+1) = A033577(k).
a(n+2) - a(n) = A004773(n+2).
a(n+3) - a(n) = A014601(n+2).
a(n+4) - a(n) = A047480(n+3).
a(n) - a(-n+3) = 2*A001651(n-1).
a(n) + a(-n+3) = 2*A097922(n-1).
a(n) = 1 + A004526(n) + A000212(n) = A008619(n) + A000212(n). - Omar E. Pol, Dec 23 2020

A236773 a(n) = n + floor( n^2/2 + n^3/3 ).

Original entry on oeis.org

0, 1, 6, 16, 33, 59, 96, 145, 210, 292, 393, 515, 660, 829, 1026, 1252, 1509, 1799, 2124, 2485, 2886, 3328, 3813, 4343, 4920, 5545, 6222, 6952, 7737, 8579, 9480, 10441, 11466, 12556, 13713, 14939, 16236, 17605, 19050, 20572, 22173, 23855, 25620, 27469
Offset: 0

Views

Author

Bruno Berselli, Feb 07 2014

Keywords

Comments

This sequence follows A074148 and A042965, A236771.
The prime terms are 59, 829, 14939, 35759, 93719, 132409, 155219, 290399, 414179, 487463, ... .
If a(k) is prime then k == 1, 5, 7 or 11 (mod 12).
Third differences: 1, 2, 2, 2, 1, 4 repeated (unsigned terms of A181982).
Fourth differences: 1, 0, 0, -1, 3, -3 repeated (see A131193).

Crossrefs

Cf. A074148: n+floor(n^2/2).
Cf. A042965: n+floor(1/2+n/3); A236771: n+floor(n/2+n^2/3).
Cf. A236772: floor(sum(i=1..n, n^i/i)).

Programs

  • Magma
    [n+Floor(n^2/2+n^3/3): n in [0..50]];
    
  • Magma
    I:=[0,1,6,16,33,59,96,145,210]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3)+Self(n-6)-3*Self(n-7)+3*Self(n-8)-Self(n-9): n in [1..50]]; // Vincenzo Librandi, Feb 08 2014
    
  • Maple
    seq(n+floor(n^2/2+n^3/3),n=0..43); # Paolo P. Lava, Aug 24 2018
  • Mathematica
    Table[n + Floor[n^2/2 + n^3/3], {n, 0, 50}]
    CoefficientList[Series[x (1 + 3 x + x^2 + 2 x^3 + 2 x^4 + 2 x^5 + x^7)/((1 + x) (1 - x + x^2) (1 + x + x^2) (1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 08 2014 *)
  • PARI
    vector(60, n, n--; n+floor(n^2/2 +n^3/3)) \\ G. C. Greubel, Aug 12 2018

Formula

G.f.: x*(1+3*x+x^2+2*x^3+2*x^4+2*x^5+x^7) / ((1+x)*(1-x+x^2)*(1+x+x^2)*(1-x)^4).
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-6) -3*a(n-7) +3*a(n-8) -a(n-9).
Also, for h>=0:
a(6h) = 6*h*( 12*h^2 + 3*h + 1 ),
a(6h+1) = 72*h^3 + 54*h^2 + 18*h + 1,
a(6h+2) = 6*( 4*h + 1 )*( 3*h^2 + 3*h + 1 ),
a(6h+3) = 2*( 36*h^3 + 63*h^2 + 39*h + 8 ),
a(6h+4) = 3*( 24*h^3 + 54*h^2 + 42*h + 11 ),
a(6h+5) = 72*h^3 + 198*h^2 + 186*h + 59.
Showing 1-2 of 2 results.