A236771 a(n) = n + floor(n/2 + n^2/3).
0, 1, 4, 7, 11, 15, 21, 26, 33, 40, 48, 56, 66, 75, 86, 97, 109, 121, 135, 148, 163, 178, 194, 210, 228, 245, 264, 283, 303, 323, 345, 366, 389, 412, 436, 460, 486, 511, 538, 565, 593, 621, 651, 680, 711, 742, 774, 806, 840, 873, 908, 943, 979
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
Crossrefs
Programs
-
Magma
[n+Floor(n/2+n^2/3): n in [0..60]];
-
Mathematica
Table[n + Floor[n/2 + n^2/3], {n, 0, 60}]
Formula
G.f.: x*(1 + 3*x + 2*x^2 - 2*x^4) / ((1 + x)*(1 + x + x^2)*(1 - x)^3).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = (2*n*(2*n+9) - 2*(-1)^floor(2*(n-1)/3) + 3*(-1)^n - 5)/12.
a(n+2) - a(n) = A004772(n+4).
Also: a(n) = n + floor(n/2) + floor(n^2/3).
Comments