cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A033577 a(n) = (3*n+1) * (4*n+1).

Original entry on oeis.org

1, 20, 63, 130, 221, 336, 475, 638, 825, 1036, 1271, 1530, 1813, 2120, 2451, 2806, 3185, 3588, 4015, 4466, 4941, 5440, 5963, 6510, 7081, 7676, 8295, 8938, 9605, 10296, 11011, 11750, 12513, 13300, 14111, 14946, 15805, 16688, 17595, 18526, 19481, 20460, 21463
Offset: 0

Views

Author

Keywords

Comments

Also the 120ยบ spoke (or ray) of a hexagonal spiral of Ulam. - Robert G. Wilson v, Jul 06 2014
If two independent real random variables x and y are distributed according to the same exponential distribution with pdf(x) = lambda * exp(-lambda * x) for some lambda > 0, then the probability that 3 <= x/(n*y) < 4 is given by n/a(n) for n>1. - Andres Cicuttin, Dec 11 2016

Examples

			See A056105 example section for hexagonal spiral of Ulam diagram. - _Robert G. Wilson v_, Jul 06 2014
		

Crossrefs

Programs

Formula

From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: (1 + 17*x + 6*x^2)/(1-x)^3. (End)
E.g.f.: (1 + 19*x + 12*x^2)*exp(x). - G. C. Greubel, Oct 12 2019

Extensions

More terms from Wesley Ivan Hurt, Jul 06 2014

A244805 The 240-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 16, 55, 118, 205, 316, 451, 610, 793, 1000, 1231, 1486, 1765, 2068, 2395, 2746, 3121, 3520, 3943, 4390, 4861, 5356, 5875, 6418, 6985, 7576, 8191, 8830, 9493, 10180, 10891, 11626, 12385, 13168, 13975, 14806, 15661, 16540, 17443, 18370, 19321, 20296, 21295, 22318, 23365, 24436, 25531
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Comments

Numbers of the form 1 + k/2 + k^2/3 (associated k are in A008588). - Bruno Berselli, Jan 20 2017

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Cf. A281333 (1 + floor(n/2) + floor(n^2/3)).

Programs

  • Magma
    [12*n^2-21*n+10: n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244805:=n->12*n^2 - 21*n + 10: seq(A244805(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12 n^2 - 21 n + 10; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 21*n + 10) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 13*x + 10*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

a(n) = 12*n^2 - 21*n + 10 (see A056105).
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 13*x + 10*x^2) / (1 - x)^3.
(End)

A212978 Number of (w,x,y) with all terms in {0,...,n} and range = 2*n-w-x.

Original entry on oeis.org

1, 5, 11, 20, 32, 46, 63, 83, 105, 130, 158, 188, 221, 257, 295, 336, 380, 426, 475, 527, 581, 638, 698, 760, 825, 893, 963, 1036, 1112, 1190, 1271, 1355, 1441, 1530, 1622, 1716, 1813, 1913, 2015, 2120, 2228, 2338, 2451, 2567, 2685, 2806, 2930
Offset: 0

Views

Author

Clark Kimberling, Jun 03 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Cf. A212959.
Second bisection of A281333.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Max[w, x, y] - Min[w, x, y] == 2 n - w - x,
      s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212978 *)
    LinearRecurrence[{2,-1,1,-2,1},{1,5,11,20,32},50] (* Harvey P. Dale, Sep 30 2017 *)

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
G.f.: (1 + 3*x + 2*x^2 + 2*x^3)/((1 - x)^3*(1 + x + x^2)). [corrected by Bruno Berselli, Jan 23 2017]

A236771 a(n) = n + floor(n/2 + n^2/3).

Original entry on oeis.org

0, 1, 4, 7, 11, 15, 21, 26, 33, 40, 48, 56, 66, 75, 86, 97, 109, 121, 135, 148, 163, 178, 194, 210, 228, 245, 264, 283, 303, 323, 345, 366, 389, 412, 436, 460, 486, 511, 538, 565, 593, 621, 651, 680, 711, 742, 774, 806, 840, 873, 908, 943, 979
Offset: 0

Views

Author

Bruno Berselli, Feb 06 2014

Keywords

Comments

If a(k) is prime then k == 3, 4 or 8 (mod 12). The primes are 7, 11, 97, 109, 163, 283, 389, 593, 1129, 1987, 2039, 2713, ... .
This sequence is between A042965 and A236773.

Crossrefs

Cf. A004772; A032766: n+floor(n/2).
Cf. A042965: n+floor(1/2+n/3); A236773: n+floor(n^2/2+n^3/3).
Cf. A281333: 1+floor(n/2)+floor(n^2/3).

Programs

  • Magma
    [n+Floor(n/2+n^2/3): n in [0..60]];
  • Mathematica
    Table[n + Floor[n/2 + n^2/3], {n, 0, 60}]

Formula

G.f.: x*(1 + 3*x + 2*x^2 - 2*x^4) / ((1 + x)*(1 + x + x^2)*(1 - x)^3).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = (2*n*(2*n+9) - 2*(-1)^floor(2*(n-1)/3) + 3*(-1)^n - 5)/12.
a(n+2) - a(n) = A004772(n+4).
Also: a(n) = n + floor(n/2) + floor(n^2/3).
Showing 1-4 of 4 results.