cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A056105 First spoke of a hexagonal spiral.

Original entry on oeis.org

1, 2, 9, 22, 41, 66, 97, 134, 177, 226, 281, 342, 409, 482, 561, 646, 737, 834, 937, 1046, 1161, 1282, 1409, 1542, 1681, 1826, 1977, 2134, 2297, 2466, 2641, 2822, 3009, 3202, 3401, 3606, 3817, 4034, 4257, 4486, 4721, 4962, 5209, 5462, 5721, 5986, 6257
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

Also the number of (not necessarily maximal) cliques in the n X n grid graph. - Eric W. Weisstein, Nov 29 2017

Examples

			The spiral begins:
                   49--48--47--46--45
                   /                 \
                 50  28--27--26--25  44
                 /   /             \   \
               51  29  13--12--11  24  43
               /   /   /         \   \   \
             52  30  14   4---3  10  23  42  67
             /   /   /   /     \   \   \   \   \
           53  31  15   5   1===2===9==22==41==66==>
             \   \   \   \         /   /   /   /
             54  32  16   6---7---8  21  40  65
               \   \   \             /   /   /
               55  33   17--18--19--20  39  64
                 \   \                 /   /
                 56  34--35--36--37--38  63
                   \                     /
                   57--58--59--60--61--62
		

Crossrefs

Cf. A285792 (prime terms), A113519 (semiprime terms).
Other spirals: A054552.

Programs

Formula

a(n) = 3*n^2 - 2*n + 1.
a(n) = a(n-1) + 6*n - 5.
a(n) = 2*a(n-1) - a(n-2) + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A056106(n) - n = A056107(n) - 2*n.
a(n) = A056108(n) - 3*n = A056109(n) - 4*n = A003215(n) - 5*n.
A008810(3*n-1) = A056109(-n) = a(n). - Michael Somos, Aug 03 2006
G.f.: (1-x+6*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
From Robert G. Wilson v, Jul 05 2014: (Start)
Each of the 6 primary spokes or rays has a generating formula as stated here:
1st: 90 degrees A056105 3n^2 - 2n + 1
2nd: 30 degrees A056106 3n^2 - n + 1
3rd: 330 degrees A056107 3n^2 + 1
4th: 270 degrees A056108 3n^2 + n + 1
5th: 210 degrees A056109 3n^2 + 2n + 1
6th: 150 degrees A003215 3n^2 + 3n + 1
Each of the 6 secondary spokes or rays has a generating formula as stated here:
1st: 60 degrees 12n^2 - 27n + 16
2nd: 360 degrees 12n^2 - 25n + 14
3rd: 300 degrees 12n^2 - 23n + 12
4th: 240 degrees 12n^2 - 21n + 10
5th: 180 degrees 12n^2 - 19n + 8
6th: 120 degrees 12n^2 - 17n + 6 = A033577(n+1)
(End)
a(n) = 1 + A000567(n). - Omar E. Pol, Apr 26 2017
a(n) = A000290(n-1) + 2*A000290(n), n >= 1. - J. M. Bergot, Mar 03 2018
E.g.f.: (1 + x + 3*x^2)*exp(x). - G. C. Greubel, Dec 02 2018

A154293 Integers of the form t/6, where t is a triangular number (A000217).

Original entry on oeis.org

0, 1, 6, 11, 13, 20, 35, 46, 50, 63, 88, 105, 111, 130, 165, 188, 196, 221, 266, 295, 305, 336, 391, 426, 438, 475, 540, 581, 595, 638, 713, 760, 776, 825, 910, 963, 981, 1036, 1131, 1190, 1210, 1271, 1376, 1441, 1463, 1530, 1645, 1716, 1740, 1813, 1938, 2015
Offset: 1

Views

Author

Keywords

Comments

Old definition was "Integers of the form: 1/6+2/6+3/6+4/6+5/6+...".
1/6 + 2/6 + 3/6 = 1, 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 + 7/6 + 8/6 = 6, ...
a(n) is the set of all integers k such that 48k+1 is a perfect square. The square roots of 48*a(n) + 1 = 1, 7, 17, 23, 25, ... = 8*(n-floor(n/4)) + (-1)^n. - Gary Detlefs, Mar 01 2010
Conjecture: A193828 divided by 2. - Omar E. Pol, Aug 19 2011
The above conjecture is correct. - Charles R Greathouse IV, Jan 02 2012
Quasipolynomial of order 4. - Charles R Greathouse IV, Jan 02 2012
It appears that the sequence terms occur as exponents in the expansion Sum_{n >= 0} x^n/Product_{k = 1..2*n} (1 + x^k) = 1 + x - x^6 - x^11 + x^13 + x^20 - x^35 - x^46 + + - - .... Cf. A218171. [added Jan 21 2025: this is correct - see Berndt et al., Theorem 3.2.] - Peter Bala, Feb 04 2021
From Peter Bala, Dec 12 2024 (Start)
The sequence terms occur as exponents in the expansion of F(x)*Product_{n >= 1} (1 - x^n) = Product_{n >= 1} (1 - x^n)*(1 + x^(4*n))^2*(1 + x^(4*n-2))*(1 + x^(8*n-3))*(1 + x^(8*n-5)) = 1 - x - x^6 + x^11 + x^13 - x^20 - x^35 + x^46 + x^50 - - + + ..., where F(x) is the g.f. of A069910.
It appears that the sequence terms occur as exponents in the expansion 1/(1 - x) * ( - x^2 + Sum_{n >= 1} x^floor((3*n+1)/2) * 1/Product_{k = 1..n} (1 + x^k) ) = x^6 + x^11 - x^13 - x^20 + x^35 + x^46 - - + + .... (End)
It appears that the sequence terms occur as exponents in the expansion Sum_{n >= 0} x^(n+1)/Product_{k = 1..2*n+2} (1 + x^k) = x - x^6 - x^11 + x^13 + x^20 - x^35 - x^46 + + - - .... - Peter Bala, Jan 21 2025

Examples

			G.f. = x^2 + 6*x^3 + 11*x^4 + 13*x^5 + 20*x^6 + 35*x^7 + 46*x^8 + ...
		

Crossrefs

Programs

  • Magma
    /* By definition: */ [t/6: n in [0..160] | IsIntegral(t/6) where t is n*(n+1)/2]; // Bruno Berselli, Mar 07 2016
  • Maple
    f:=n-> 8*(n-floor(n/4))+(-1)^n:seq((f(n)^2-1)/48,n=0..51); # Gary Detlefs, Mar 01 2010
  • Mathematica
    lst={}; s=0; Do[s+=n/6; If[Floor[s]==s, AppendTo[lst, s]], {n, 0, 7!}]; lst (* Orlovsky *)
    Join[{0}, Select[Table[Plus@@Range[n]/6, {n, 200}], IntegerQ]] (* Alonso del Arte, Jan 20 2012 *)
    LinearRecurrence[{3,-5,7,-7,5,-3,1},{0,1,6,11,13,20,35},60] (* Charles R Greathouse IV, Jan 20 2012 *)
    a[ n_] := (3 n^2 + If[ OddQ[ Quotient[ n + 1, 2]], -5 n + 2, -n]) / 4; (* Michael Somos, Feb 10 2015 *)
    a[ n_] := Module[{m = n}, If[ n < 1, m = 1 - n]; SeriesCoefficient[ x^2 (1 + 4 x + x^2) (1 - x^2) (1 - x^6) / ((1 - x)^2 (1 - x^3) (1 - x^4)^2), {x, 0, m}]]; (* Michael Somos, Feb 10 2015 *)
  • PARI
    a(n)=n--;(8*(n-n\4)+(-1)^n)^2\48 \\ Charles R Greathouse IV, Jan 02 2012
    
  • PARI
    {a(n) = (3*n^2 + if( (n+1)\2%2, -5*n+2,-n)) / 4}; /* Michael Somos, Feb 10 2015 */
    
  • PARI
    {a(n) = if( n<1, n = 1-n); polcoeff( x^2 * (1 + 4*x + x^2) * (1 - x^2) * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)^2) + x * O(x^n), n)}; /* Michael Somos, Feb 10 2015 */
    

Formula

From R. J. Mathar, Jan 07 2009: (Start)
a(n) = A000217(A108752(n))/6.
G.f.: x^2*(x^2-x+1)*(x^2+4*x+1)/((1+x^2)^2*(1-x)^3) (conjectured). (End)
The conjectured g.f. is correct. - Charles R Greathouse IV, Jan 02 2012
a(n) = (f(n)^2-1)/48 where f(n) = 8*(n-floor(n/4))+(-1)^n, with offset 0, a(0)=0. - Gary Detlefs, Mar 01 2010
a(n) = a(1-n) for all n in Z. - Michael Somos, Oct 27 2012
G.f.: x^2 * (1 + 4*x + x^2) * (1 - x^2) * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)^2). - Michael Somos, Feb 10 2015
Sum_{n>=2} 1/a(n) = 12 - (1+4/sqrt(3))*Pi. - Amiram Eldar, Mar 18 2022
a(n) = A069497(n)/6. - Hugo Pfoertner, Nov 19 2024
From Peter Bala, Jan 21 2025: (Start)
a(4*n) = 12*n^2 - n; a(4*n+1) = 12*n^2 + n;
a(4*n+2) = (3*n + 1)*(4*n + 1) = A033577(n); a(4*n+3) = (3*n + 2)*(4*n + 3) = A033578(n+1).
Let T(n) = n*(n + 1)/2 denote the n-th triangular number. Then
a(4*n) = (1/6) * T(12*n-1); a(4*n+1) = (1/6) * T(12*n);
a(4*n+2) = (1/6) * T(12*n+3); a(4*n+3) = (1/6) * T(12*n+8). (End)

Extensions

Definition rewritten by M. F. Hasler, Dec 31 2012

A244818 The hexagonal spiral of Champernowne, read along the 120-degree ray.

Original entry on oeis.org

1, 1, 6, 7, 1, 8, 1, 4, 1, 3, 6, 6, 6, 4, 3, 9, 3, 7, 2, 1, 2, 3, 7, 1, 7, 9, 3, 2, 8, 5, 0, 3, 5, 0, 8, 4, 8, 4, 6, 4, 7, 9, 6, 5, 2, 3, 7, 6, 3, 6, 8, 8, 0, 9, 1, 9, 3, 9, 1, 0, 0, 1, 3, 1, 2, 2, 1, 8, 1, 3, 4, 1, 6, 1, 5, 5, 1, 5, 1, 7, 7, 1, 7, 1, 9, 9, 2, 0, 2, 1, 1, 2, 6, 2, 3, 4, 2, 3, 2, 5, 6, 2, 3, 2, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A244807 example section for its diagram.
		

Crossrefs

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; f[n_] := 12n^2 - 17n + 6 (* see formula section of A244807 *); Array[ almostNatural[ f@#, 10] &, 105]

Formula

(12n^2-17n+6)th almost natural number (A033307), also see formula section of A056105.

A244805 The 240-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 16, 55, 118, 205, 316, 451, 610, 793, 1000, 1231, 1486, 1765, 2068, 2395, 2746, 3121, 3520, 3943, 4390, 4861, 5356, 5875, 6418, 6985, 7576, 8191, 8830, 9493, 10180, 10891, 11626, 12385, 13168, 13975, 14806, 15661, 16540, 17443, 18370, 19321, 20296, 21295, 22318, 23365, 24436, 25531
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Comments

Numbers of the form 1 + k/2 + k^2/3 (associated k are in A008588). - Bruno Berselli, Jan 20 2017

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Cf. A281333 (1 + floor(n/2) + floor(n^2/3)).

Programs

  • Magma
    [12*n^2-21*n+10: n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244805:=n->12*n^2 - 21*n + 10: seq(A244805(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12 n^2 - 21 n + 10; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 21*n + 10) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 13*x + 10*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

a(n) = 12*n^2 - 21*n + 10 (see A056105).
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 13*x + 10*x^2) / (1 - x)^3.
(End)

A244806 The 180-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 18, 59, 124, 213, 326, 463, 624, 809, 1018, 1251, 1508, 1789, 2094, 2423, 2776, 3153, 3554, 3979, 4428, 4901, 5398, 5919, 6464, 7033, 7626, 8243, 8884, 9549, 10238, 10951, 11688, 12449, 13234, 14043, 14876, 15733, 16614, 17519, 18448, 19401, 20378, 21379, 22404, 23453, 24526, 25623
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Programs

  • Magma
    [12*n^2 - 19*n + 8 : n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244806:=n->12*n^2 - 19*n + 8: seq(A244806(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 19n + 8; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 19*n + 8) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 15*x + 8*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

a(n) = 12*n^2 - 19*n + 8.
See A056105 example section for its formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 15*x + 8*x^2) / (1 - x)^3.
(End)

A244803 The 360 degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 12, 47, 106, 189, 296, 427, 582, 761, 964, 1191, 1442, 1717, 2016, 2339, 2686, 3057, 3452, 3871, 4314, 4781, 5272, 5787, 6326, 6889, 7476, 8087, 8722, 9381, 10064, 10771, 11502, 12257, 13036, 13839, 14666, 15517, 16392, 17291, 18214, 19161, 20132, 21127, 22146, 23189, 24256, 25347
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for a diagram.
		

Crossrefs

Programs

  • Magma
    [12*n^2-25*n+14 : n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244803:=n->12*n^2-25*n+14: seq(A244803(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 25n + 14; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 25*n + 14) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 2*x)*((1 + 7*x) / (1 - x)^3) + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

See A056105 example section for a formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 2*x)*((1 + 7*x) / (1 - x)^3).
(End)

A244804 The 300-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 14, 51, 112, 197, 306, 439, 596, 777, 982, 1211, 1464, 1741, 2042, 2367, 2716, 3089, 3486, 3907, 4352, 4821, 5314, 5831, 6372, 6937, 7526, 8139, 8776, 9437, 10122, 10831, 11564, 12321, 13102, 13907, 14736, 15589, 16466, 17367, 18292, 19241, 20214, 21211, 22232, 23277, 24346, 25439
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Programs

  • Magma
    [ 12*n^2 - 23*n + 12 : n in [1..50] ]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244804:=n->12*n^2 - 23*n + 12: seq(A244804(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12n^2 - 23n + 12; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 23*n + 12) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 11*x + 12*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

See A056105 example section for its formula.
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 11*x + 12*x^2) / (1 - x)^3.
(End)

A281333 a(n) = 1 + floor(n/2) + floor(n^2/3).

Original entry on oeis.org

1, 1, 3, 5, 8, 11, 16, 20, 26, 32, 39, 46, 55, 63, 73, 83, 94, 105, 118, 130, 144, 158, 173, 188, 205, 221, 239, 257, 276, 295, 316, 336, 358, 380, 403, 426, 451, 475, 501, 527, 554, 581, 610, 638, 668, 698, 729, 760, 793, 825, 859, 893, 928, 963, 1000, 1036, 1074, 1112, 1151, 1190
Offset: 0

Views

Author

Bruno Berselli, Jan 20 2017

Keywords

Crossrefs

Subsequences: A033577, A244805 (numbers of the form 1 + k/2 + k^2/3), A212978 (second bisection).
Cf. A236771: n + floor(n/2) + floor(n^2/3).
Cf. A008619: 1 + floor(n/2); A087483: 1 + floor(n^2/3).

Programs

  • Magma
    [1 + n div 2 + n^2 div 3: n in [0..60]];
  • Maple
    A281333:=n->1 + floor(n/2) + floor(n^2/3): seq(A281333(n), n=0..100); # Wesley Ivan Hurt, Feb 09 2017
  • Mathematica
    Table[1 + Floor[n/2] + Floor[n^2/3], {n, 0, 60}]
    LinearRecurrence[{1,1,0,-1,-1,1},{1,1,3,5,8,11},80] (* Harvey P. Dale, Sep 29 2024 *)
  • Maxima
    makelist(1+floor(n/2)+floor(n^2/3), n, 0, 60);
    
  • PARI
    vector(60, n, n--; 1+floor(n/2)+floor(n^2/3))
    
  • Python
    [1+int(n/2)+int(n**2/3) for n in range(60)]
    
  • Sage
    [1+floor(n/2)+floor(n^2/3) for n in range(60)]
    

Formula

G.f.: (1 + x^2 + x^3 + x^4)/((1 + x)*(1 + x + x^2)*(1 - x)^3).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = 1 + floor(n/2 + n^2/3).
a(n) = (12*n^2 + 18*n + 4*(-1)^(2*n/3) + 4*(-1)^(-2*n/3) + 9*(-1)^n + 19)/36.
a(n) - n = a(-n).
a(6*k+r) = 12*k^2 + (4*r+3)*k + a(r), where 0 <= r <= 5. Particular cases:
a(6*k) = A244805(k+1), a(6*k+1) = A033577(k).
a(n+2) - a(n) = A004773(n+2).
a(n+3) - a(n) = A014601(n+2).
a(n+4) - a(n) = A047480(n+3).
a(n) - a(-n+3) = 2*A001651(n-1).
a(n) + a(-n+3) = 2*A097922(n-1).
a(n) = 1 + A004526(n) + A000212(n) = A008619(n) + A000212(n). - Omar E. Pol, Dec 23 2020

A033578 a(n) = (3*n - 1)*(4*n - 1).

Original entry on oeis.org

1, 6, 35, 88, 165, 266, 391, 540, 713, 910, 1131, 1376, 1645, 1938, 2255, 2596, 2961, 3350, 3763, 4200, 4661, 5146, 5655, 6188, 6745, 7326, 7931, 8560, 9213, 9890, 10591, 11316, 12065, 12838, 13635, 14456, 15301, 16170, 17063, 17980, 18921, 19886, 20875
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033577.

Programs

Formula

From G. C. Greubel, Oct 09 2019: (Start)
G.f.: (1 + 3*x +20*x^2)/(1-x)^3.
E.g.f.: (1 + 5*x + 12*x^2)*exp(x). (End)

A377979 List of exponents in the expansion of (1 - q)*Sum_{n >= 0} q^(2*n*(n+1))*Product_{k >= 2*n+1} 1 - q^k.

Original entry on oeis.org

0, 1, 3, 4, 6, 8, 11, 13, 18, 20, 26, 29, 35, 39, 46, 50, 59, 63, 73, 78, 88, 94, 105, 111, 124, 130, 144, 151, 165, 173, 188, 196, 213, 221, 239, 248, 266, 276, 295, 305, 326, 336, 358, 369, 391, 403, 426, 438, 463, 475, 501, 514, 540, 554, 581, 595, 624, 638, 668, 683, 713, 729, 760, 776, 809, 825
Offset: 1

Views

Author

Peter Bala, Dec 16 2024

Keywords

Comments

Compare with the expansions Sum_{n >= 0} q^(2*n*(n+1))*Product_{k >= 2*n+2} 1 - q^k = 1 - q^2 - q^3 + q^7 + q^17 - q^25 - q^28 + + - - ... (see A268539) and Sum_{n >= 0} q^(n*(n+1))*Product_{k >= 2*n+1} 1 - q^k = 1 - q - q^8 + q^13 + q^17 - q^24 - q^45 + + - - .... (see A204221).
Conjectures:
1) apart from the coefficient of q, the coefficients of the series expansion (see below) belong to {-1, 0, 1}.
2) starting at q^3, the signs of the nonzero coefficients follow the pattern + + - - + + - - ....
It appears that the sequence terms are the exponents in the expansion of Sum_{n >= 0} x^(3*n)/(Product_{k = 1..2*n} 1 + x^k) = 1 + x^3 - x^4 + x^6 - x^8 + x^11 - x^13 + - .... - Peter Bala, Jan 21 2025

Examples

			(1 - q)*Sum_{n >= 0} q^(2*n*(n+1))*Product_{k >= 2*n+1} 1 - q^k = 1 - 2*q + q^3 + q^4 - q^6 - q^8 + q^11 + q^13 - q^18 - q^20 + q^26 + q^29 - q^35 - q^39 + q^46 + q^50 - q^59 - q^63 + + - - ....
		

Crossrefs

Programs

  • Maple
    series(add((1 - q)*q^(2*n*(n+1))*mul(1 - q^k, k = 2*n+1..1000), n = 0..21), q, 1001);

Formula

The following are conjectural:
a(n) is quasi-polynomial in n:
a(8*n+1) = 12*n^2 + 5*n + 1 = A244806(n+1) for n >= 1;
a(8*n+2) = 12*n^2 + 7*n + 1 = A033577(n); a(8*n+3) = 12*n^2 + 11*n + 3;
a(8*n+4) = 12*n^2 + 13*n + 4; a(8*n+5) = 12*n^2 + 17*n + 6 = A033578(n+1);
a(8*n+6) = 12*n^2 + 19*n + 8; a(8*n+7) = 12*n^2 + 23*n + 11;
a(8*n+8) = 12*n^2 + 25*n + 13.
G.f.: x^2*(x^8 - x^7 - 2*x^6 + 3*x^5 + 2*x^4 - 2*x^3 - x^2 + 2*x + 1)/((1 + x)^2*(1 - x)^3*(1 + x^4)) = x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 11*x^7 + ....
Showing 1-10 of 10 results.