A236913 Number of partitions of 2n of type EE (see Comments).
1, 1, 3, 6, 12, 22, 40, 69, 118, 195, 317, 505, 793, 1224, 1867, 2811, 4186, 6168, 9005, 13026, 18692, 26613, 37619, 52815, 73680, 102162, 140853, 193144, 263490, 357699, 483338, 650196, 870953, 1161916, 1544048, 2044188, 2696627, 3545015, 4644850, 6066425
Offset: 0
Examples
The partitions of 4 of type EE are [3,1], [2,2], [1,1,1,1], so that a(2) = 3. type/k . 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 ... 9 ... 10 .. 11 EO ..... 0 .. 1 .. 0 .. 2 .. 0 .. 5 .. 0 .. 10 .. 0 ... 20 .. 0 OE ..... 1 .. 0 .. 2 .. 0 .. 4 .. 0 .. 8 .. 0 ... 16 .. 0 ... 29 EE ..... 0 .. 1 .. 0 .. 3 .. 0 .. 6 .. 0 .. 12 .. 0 ... 22 .. 0 OO ..... 0 .. 0 .. 1 .. 0 .. 3 .. 0 .. 7 .. 0 ... 14 .. 0 ... 27 From _Gus Wiseman_, Feb 09 2021: (Start) This sequence counts even-length partitions of even numbers, which have Heinz numbers given by A340784. For example, the a(0) = 1 through a(4) = 12 partitions are: () (11) (22) (33) (44) (31) (42) (53) (1111) (51) (62) (2211) (71) (3111) (2222) (111111) (3221) (3311) (4211) (5111) (221111) (311111) (11111111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Note: A-numbers of ranking sequences are in parentheses below.
The ordered version is A000302.
The Heinz numbers of these partitions are (A340784).
A034008 counts compositions of even length.
A072233 counts partitions by sum and length.
A339846 counts factorizations of even length.
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0$3], `if`(i<1, [0$4], b(n, i-1)+`if`(i>n, [0$4], (p-> `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]], [p[2], p[1], p[4], p[3]]))(b(n-i, i))))) end: a:= n-> b(2*n$2)[1]: seq(a(n), n=0..40); # Alois P. Heinz, Feb 16 2014
-
Mathematica
z = 25; m1 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m2 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]]; m3 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]] ; m4 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m1 (* A236559, type EO*) m2 (* A160786, type OE*) m3 (* A236913, type EE*) m4 (* A236914, type OO*) (* Peter J. C. Moses, Feb 03 2014 *) b[n_, i_] := b[n, i] = If[n == 0, {1, 0, 0, 0}, If[i < 1, {0, 0, 0, 0}, b[n, i - 1] + If[i > n, {0, 0, 0, 0}, Function[p, If[Mod[i, 2] == 0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n - i, i]]]]]; a[n_] := b[2*n, 2*n][[1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[2n],EvenQ[Length[#]]&]],{n,0,15}] (* Gus Wiseman, Feb 09 2021 *)
Extensions
More terms from Alois P. Heinz, Feb 16 2014
Comments