A236950 Primes p such that p^4+p-1 is prime.
2, 3, 13, 17, 23, 31, 43, 157, 229, 293, 353, 373, 397, 409, 463, 521, 577, 619, 727, 743, 857, 883, 953, 1049, 1087, 1123, 1171, 1319, 1409, 1423, 1429, 1459, 1499, 1511, 1543, 1619, 1693, 1847, 1871, 1931, 1951, 1993, 2017, 2029, 2129
Offset: 1
Keywords
Examples
577 is prime and 577^4 + 577 - 1 = 110841719617 is prime. Thus, 577 is a member of this sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A236759.
Programs
-
Magma
[p: p in PrimesUpTo(6000) | IsPrime(p^4+p-1)]; // Vincenzo Librandi, Feb 14 2014
-
Mathematica
Select[Prime[Range[5000]], PrimeQ[#^4 + # - 1]&] (* Vincenzo Librandi, Feb 14 2014 *)
-
PARI
s=[]; forprime(p=2, 6000, if(isprime(p^4+p-1), s=concat(s, p))); s \\ Colin Barker, Feb 05 2014
-
Python
import sympy from sympy import isprime {print(n) for n in range(10**4) if isprime(n) and isprime(n**4+n-1)}
Comments