cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236960 Given g.f. A(x) of this sequence, triangle A236961 transforms the diagonals in the table of successive iterations of A(x) such that A236961(n,0) = n^n.

Original entry on oeis.org

1, 1, 2, 5, 16, 79, 720, 10735, 211802, 4968491, 132655760, 3943593218, 128724395888, 4567299614131, 174792721389278, 7170679832812100, 313729852611817418, 14576333351368836005, 716547887877448952206, 37150482490370675725494, 2025776434511141860123174, 115890536127998971200900825
Offset: 1

Views

Author

Paul D. Hanna, Feb 01 2014

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 79*x^6 + 720*x^7 + 10735*x^8 + 211802*x^9 + 4968491*x^10 + 132655760*x^11 + 3943593218*x^12 +...
The table of coefficients in the successive iterations of A(x) begins:
[1,  0,   0,    0,     0,      0,       0,        0,         0, ...];
[1,  1,   2,    5,    16,     79,     720,    10735,    211802, ...];
[1,  2,   6,   21,    84,    410,    2876,    33235,    581074, ...];
[1,  3,  12,   54,   266,   1463,    9740,    90999,   1308954, ...];
[1,  4,  20,  110,   648,   4102,   28932,   248808,   2972926, ...];
[1,  5,  30,  195,  1340,   9705,   75264,   655599,   7059436, ...];
[1,  6,  42,  315,  2476,  20284,  174304,  1610487,  16952240, ...];
[1,  7,  56,  476,  4214,  38605,  366660,  3656975,  39586868, ...];
[1,  8,  72,  684,  6736,  68308,  712984,  7710392,  88021908, ...];
[1,  9,  90,  945, 10248, 114027, 1299696, 15223599, 185218134, ...];
[1, 10, 110, 1265, 14980, 181510, 2245428, 28396003, 369356822, ...]; ...
Then the triangle T=A236961 transforms the adjacent diagonals in the above table into each other, as illustrated by:
T*[1, 1,  6,  54,  648,  9705, 174304, 3656975,  88021908, ...]
= [1, 2, 12, 110, 1340, 20284, 366660, 7710392, 185218134, ...];
T*[1, 2, 12, 110, 1340, 20284, 366660,  7710392, 185218134, ...]
= [1, 3, 20, 195, 2476, 38605, 712984, 15223599, 369356822, ...];
T*[1, 3, 20, 195, 2476, 38605,  712984, 15223599, 369356822, ...]
= [1, 4, 30, 315, 4214, 68308, 1299696, 28396003, 701068918, ...]; ...
Triangle T=A236961 begins:
1;
1, 1;
4, 2, 1;
27, 11, 3, 1;
256, 94, 21, 4, 1;
3125, 1076, 217, 34, 5, 1;
46656, 15362, 2910, 412, 50, 6, 1;
823543, 262171, 47598, 6333, 695, 69, 7, 1;
16777216, 5198778, 915221, 116768, 12045, 1082, 91, 8, 1;
387420489, 117368024, 20182962, 2498414, 247151, 20871, 1589, 116, 9, 1;
10000000000, 2970653234, 501463686, 60678776, 5824330, 471666, 33761, 2232, 144, 10, 1; ...
such that column 0 equals A236961(n,0) = n^n.
		

Crossrefs

Cf. A236961.

Programs

  • PARI
    /* From Root Series G, Calculate T(n,k) of Triangle: */
    {T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x;
    for(i=1, r+c-2, F=subst(F, x, G +x*O(x^(m+2)))); polcoeff(F, c));
    N=matrix(m+1, m+1, r, c, M[r, c]);
    P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    /* Calculates Root Series G and then Prints ROWS of Triangle: */
    {ROWS=12;V=[1,1];print("");print1("Root Sequence: [1, 1, ");
    for(i=2,ROWS,V=concat(V,0);G=x*truncate(Ser(V));
    for(n=0,#V-1,if(n==#V-1,V[#V]=n^n-T(n,0));for(k=0,n, T(n,k)));print1(V[#V]", "););
    print1("...]");print("");print("");print("Triangle begins:");
    for(n=0,#V-2,for(k=0,n,print1(T(n,k),", "));print(""))}