cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236965 Number of nonzero quartic residues modulo the n-th prime.

Original entry on oeis.org

1, 1, 1, 3, 5, 3, 4, 9, 11, 7, 15, 9, 10, 21, 23, 13, 29, 15, 33, 35, 18, 39, 41, 22, 24, 25, 51, 53, 27, 28, 63, 65, 34, 69, 37, 75, 39, 81, 83, 43, 89, 45, 95, 48, 49, 99, 105, 111, 113, 57, 58, 119, 60, 125, 64, 131, 67, 135, 69, 70, 141, 73, 153, 155, 78
Offset: 1

Views

Author

Carmine Suriano, Apr 22 2014

Keywords

Examples

			a(5) = 5 for x^4 (mod 11 = prime(5)) equals 1, 3, 4, 5, 9.
		

Crossrefs

Programs

  • Maple
    seq((ithprime(n)-1)/gcd(ithprime(n)-1,4), n=1..80); # Ridouane Oudra, Mar 13 2025
  • PARI
    a(n) = numerator(1/2 - 1/(prime(n)+1)); \\ Michel Marcus, Feb 26 2019
    
  • PARI
    a(n) = my(p=prime(n)); sum(k=0, p-1, m = Mod(k,p); m && ispower(Mod(k,p), 4)); \\ Michel Marcus, Feb 26 2019
    
  • Python
    from sympy import prime
    from fractions import Fraction
    def a(n): return (Fraction(1, 2) - Fraction(1, (prime(n)+1))).numerator
    print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Jun 04 2021

Formula

For odd primes, if prime(n) = 4k+1 then a(n) = (prime(n)-1)/4, if prime(n) = 4k+3 then a(n)=(prime(n)-1)/2.
a(n) = numerator(1/2 - 1/(prime(n)+1)). - Michel Marcus, Feb 26 2019
a(n) = A006093(n)/gcd(A006093(n),4). - Ridouane Oudra, Mar 13 2025