cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236988 Real part of the product of all the Gaussian integers in the rectangle [1, 1] to [2, n].

Original entry on oeis.org

1, -20, 140, 200, -67600, 3983200, -228488000, 14375920000, -1002261520000, 74864404160000, -5398716356800000, 221997813232000000, 54286859023072000000, -27326116497867200000000, 9481971502321385600000000, -3155347494162485190400000000
Offset: 1

Views

Author

Jon Perry, Feb 02 2014

Keywords

Comments

By Gaussian integers, we mean complex numbers of the form a + bi, where both a and b are integers in Z, i = sqrt(-1). Thus the quadratic integer ring under consideration here is Z[i].

Examples

			For n = 2, we have (1 + i)(1 + 2i)(2 + i)(2 + 2i) which gives -20 + 0i, so a(2) = -20.
		

Crossrefs

Programs

  • JavaScript
    function cNumber(x, y) {
    return [x, y];
    }
    function cMult(a, b) {
    return [a[0] * b[0] - a[1] * b[1], a[0] * b[1] + a[1] * b[0]];
    }
    for (i = 1; i < 20; i++) {
    c = cNumber(1, 0);
    for (j = 1; j <= 2; j++)
    for (k = 1; k <= i; k++)
    c = cMult(c, cNumber(j, k));
    document.write(c[0] + ", ");
    }
    
  • Mathematica
    Table[Re[Times@@Flatten[Table[a + b I, {a, 2}, {b, n}]]], {n, 20}] (* Alonso del Arte, Feb 02 2014 *)
  • PARI
    a(n) = real(prod(i=1, 2, prod(j=1, n, i+I*j))); \\ Michel Marcus, Feb 03 2014

Formula

a(n) +(2*n+3)*(n-2)*a(n-1) +n*(n+1)*(n^2-4*n+8)*a(n-2) -2*(n^2-4*n+8)*(n^2-4*n+5)*a(n-3)=0. - R. J. Mathar, Feb 08 2014