A237188 Smallest member of Sophie Germain pair, where each member of the prime pair is the smallest of its prime triple (p, p+2, p+8).
5, 29, 2549, 6269, 41609, 259379, 418349, 492059, 514049, 521879, 819029, 1171199, 1659809, 1994339, 2014139, 2325509, 2327399, 2392139, 2420699, 2481179, 2844269, 3142829, 3393359, 3637169, 3990029
Offset: 1
Keywords
Examples
a(1): p = 5; (2*p)+1 = 11 Prime triples (5,7,13);(11,13,19) a(2): p = 29; (2*p)+1=59 Prime triples (29,31,37);(59,61,67)
Links
- Abhiram R Devesh and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 135 terms from Devesh)
- Eric Weisstein's World of Mathematics, Sophie Germain Prime
- Wikipedia, Sophie Germain prime
Crossrefs
Cf. A005384.
Programs
-
Mathematica
sgpQ[n_]:=Module[{sg=2n+1},AllTrue[Flatten[{sg+{0,2,8},n+{2,8}}], PrimeQ]]; Select[Prime[ Range[ 300000]],sgpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 02 2016 *)
-
PARI
is(n)=isprime(n) && isprime(n+2) && isprime(n+8) && isprime(2*n+1) && isprime(2*n+3) && isprime(2*n+9) \\ Charles R Greathouse IV, Feb 05 2014
-
Python
from sympy import isprime print([5] + [n for m in range(29, 10**8, 210) for n in (m, m+150) if isprime(n) and isprime(n+2) and isprime(n+8) and isprime(2*n+1) and isprime(2*n+3) and isprime(2*n+9)]) # David Radcliffe, Aug 07 2025
Comments