cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237258 Number of strict partitions of 2n that include a partition of n.

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 32, 43, 63, 84, 122, 158, 220, 293, 393, 511, 685, 881, 1156, 1485, 1925, 2445, 3147, 3952, 5019, 6323, 7924, 9862, 12336, 15259, 18900, 23294, 28646, 35091, 42985, 52341, 63694, 77336, 93588, 112973, 136367, 163874, 196638
Offset: 0

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

A strict partition is a partition into distinct parts.

Examples

			a(5) counts these partitions of 10: [5,4,1], [5,3,2], [4,3,2,1].
		

Crossrefs

The non-strict version is A002219, ranked by A357976.
These partitions are ranked by A357854.
A000712 counts distinct submultisets of partitions, strict A032302.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.

Programs

  • Mathematica
    z = 24; Table[theTotals = Map[{#, Map[Total, Subsets[#]]} &,  Select[IntegerPartitions[2 nn], # == DeleteDuplicates[#] &]]; Length[Map[#[[1]] &, Select[theTotals, Length[Position[#[[2]], nn]] >= 1 &]]], {nn, z}] (* Peter J. C. Moses, Feb 04 2014 *)

Formula

a(n) = A237194(2n,n).

Extensions

a(31)-a(47) from Alois P. Heinz, Feb 07 2014