A237258 Number of strict partitions of 2n that include a partition of n.
1, 0, 0, 1, 1, 3, 4, 7, 9, 16, 21, 32, 43, 63, 84, 122, 158, 220, 293, 393, 511, 685, 881, 1156, 1485, 1925, 2445, 3147, 3952, 5019, 6323, 7924, 9862, 12336, 15259, 18900, 23294, 28646, 35091, 42985, 52341, 63694, 77336, 93588, 112973, 136367, 163874, 196638
Offset: 0
Keywords
Examples
a(5) counts these partitions of 10: [5,4,1], [5,3,2], [4,3,2,1].
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..200
Crossrefs
These partitions are ranked by A357854.
Programs
-
Mathematica
z = 24; Table[theTotals = Map[{#, Map[Total, Subsets[#]]} &, Select[IntegerPartitions[2 nn], # == DeleteDuplicates[#] &]]; Length[Map[#[[1]] &, Select[theTotals, Length[Position[#[[2]], nn]] >= 1 &]]], {nn, z}] (* Peter J. C. Moses, Feb 04 2014 *)
Formula
a(n) = A237194(2n,n).
Extensions
a(31)-a(47) from Alois P. Heinz, Feb 07 2014
Comments