A237262 Values of x in the solutions to x^2 - 8*x*y + y^2 + 11 = 0, where 0 < x < y.
1, 2, 6, 15, 47, 118, 370, 929, 2913, 7314, 22934, 57583, 180559, 453350, 1421538, 3569217, 11191745, 28100386, 88112422, 221233871, 693707631, 1741770582, 5461548626, 13712930785, 42998681377, 107961675698, 338527902390, 849980474799, 2665224537743
Offset: 1
Examples
6 is a term because (x, y) = (6, 47) is a solution to x^2 - 8xy + y^2 + 11 = 0.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,8,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,8,0,-1},{1,2,6,15},30] (* Harvey P. Dale, Sep 06 2020 *)
-
PARI
Vec(-x*(x-1)*(x^2+3*x+1)/(x^4-8*x^2+1) + O(x^100))
Formula
G.f.: -x*(x-1)*(x^2 + 3*x + 1) / (x^4 - 8*x^2 + 1).
a(n) = 8*a(n-2) - a(n-4) for n > 4.
a(n) = (11*a(n-1) - 4*a(n-2))/3 if n is odd; a(n) = (11*a(n-1) - 3*a(n-2))/4 if n is even. - R. J. Mathar, Jun 18 2014
Comments