Original entry on oeis.org
1, 4, 9, 32, 71, 252, 559, 1984, 4401, 15620, 34649, 122976, 272791, 968188, 2147679, 7622528, 16908641, 60012036, 133121449, 472473760, 1048062951, 3719778044, 8251382159, 29285750592, 64962994321, 230566226692, 511452572409, 1815244062944
Offset: 1
A199336
x-values in the solution to 15*x^2 - 14 = y^2.
Original entry on oeis.org
1, 3, 5, 23, 39, 181, 307, 1425, 2417, 11219, 19029, 88327, 149815, 695397, 1179491, 5474849, 9286113, 43103395, 73109413, 339352311, 575589191, 2671715093, 4531604115, 21034368433, 35677243729, 165603232371, 280886345717, 1303791490535, 2211413522007
Offset: 1
-
m:=29; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)*(1+4*x+x^2)/(1-8*x^2+x^4))); // Bruno Berselli, Nov 08 2011
-
LinearRecurrence[{0, 8, 0, -1}, {1, 3, 5, 23}, 50] (* T. D. Noe, Nov 07 2011 *)
A281584
Solutions x to the negative Pell equation x^2 - 15*y^2 = -11 with x, y > 0.
Original entry on oeis.org
2, 7, 23, 58, 182, 457, 1433, 3598, 11282, 28327, 88823, 223018, 699302, 1755817, 5505593, 13823518, 43345442, 108832327, 341257943, 856835098, 2686718102, 6745848457, 21152486873, 53109952558, 166533176882, 418133772007, 1311112928183, 3291960223498
Offset: 1
7 is in the sequence because (x, y) = (7, 2) is a solution to x^2 - 15*y^2 = -11.
-
[n le 2 select 5*n-3 else IsOdd(n) select (11*Self(n-1)-4*Self(n-2))/3 else (11*Self(n-1)-3*Self(n-2))/4: n in [1..30]]; // Bruno Berselli, Jan 25 2017
-
LinearRecurrence[{0, 8, 0, -1}, {2, 7, 23, 58}, 30] (* Bruno Berselli, Jan 25 2017 *)
-
Vec(x*(1 + x)*(2 + x)*(1 + 2*x) / (1 - 8*x^2 + x^4) + O(x^30))
A341927
Bisection of the numerators of the convergents of cf(1,4,1,6,1,6,...,6,1).
Original entry on oeis.org
1, 6, 47, 370, 2913, 22934, 180559, 1421538, 11191745, 88112422, 693707631, 5461548626, 42998681377, 338527902390, 2665224537743, 20983268399554, 165200922658689, 1300624112869958, 10239791980300975, 80617711729537842, 634701901856001761, 4996997503118476246, 39341278123091808207
Offset: 0
-
LinearRecurrence[{8, -1}, {1,6},15]
-
my(p=Mod('x,'x^2-8*'x+1)); a(n) = subst(lift(p^n),'x,6); \\ Kevin Ryde, Mar 01 2021
A341929
Bisection of the numerators of the convergents of cf (1,1,6,1,6,1,...,6,1).
Original entry on oeis.org
1, 2, 15, 118, 929, 7314, 57583, 453350, 3569217, 28100386, 221233871, 1741770582, 13712930785, 107961675698, 849980474799, 6691882122694, 52685076506753, 414788729931330, 3265624762943887, 25710209373619766, 202416050226014241, 1593618192434494162, 12546529489249939055, 98778617721565018278
Offset: 0
-
LinearRecurrence [{8, -1}, {1,2}, 15]
-
my(p=Mod('x,'x^2-8*'x+1)); a(n) = subst(lift(p^n),'x,2); \\ Kevin Ryde, Feb 27 2021
Showing 1-5 of 5 results.
Comments