cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: John O. Oladokun

John O. Oladokun's wiki page.

John O. Oladokun has authored 3 sequences.

A341929 Bisection of the numerators of the convergents of cf (1,1,6,1,6,1,...,6,1).

Original entry on oeis.org

1, 2, 15, 118, 929, 7314, 57583, 453350, 3569217, 28100386, 221233871, 1741770582, 13712930785, 107961675698, 849980474799, 6691882122694, 52685076506753, 414788729931330, 3265624762943887, 25710209373619766, 202416050226014241, 1593618192434494162, 12546529489249939055, 98778617721565018278
Offset: 0

Author

John O. Oladokun, Feb 23 2021

Keywords

Comments

15*a(n)^2 - 11 is a square for all terms.
x = a(n) and y = a(n+1) satisfy the equation x^2 + y^2 - 8*x*y = -11.
x = a(n) and y = a(n+2) satisfy x^2 + y^2 - 62*x*y = -704.

Examples

			a(3) = 8*15 - 2 = 118.
		

Crossrefs

After a(0), bisection of A237262.
Cf. A341927.

Programs

  • Mathematica
    LinearRecurrence [{8, -1}, {1,2}, 15]
  • PARI
    my(p=Mod('x,'x^2-8*'x+1)); a(n) = subst(lift(p^n),'x,2); \\ Kevin Ryde, Feb 27 2021

Formula

a(n) = 8*a(n-1) - a(n-2) for n >= 2.
a(n) = A237262(2*n) for n >= 1.
G.f.: (1 - 6*x)/(1 - 8*x + x^2). - Stefano Spezia, Mar 01 2021

A341927 Bisection of the numerators of the convergents of cf(1,4,1,6,1,6,...,6,1).

Original entry on oeis.org

1, 6, 47, 370, 2913, 22934, 180559, 1421538, 11191745, 88112422, 693707631, 5461548626, 42998681377, 338527902390, 2665224537743, 20983268399554, 165200922658689, 1300624112869958, 10239791980300975, 80617711729537842, 634701901856001761, 4996997503118476246, 39341278123091808207
Offset: 0

Author

John O. Oladokun, Feb 23 2021

Keywords

Comments

15*a(n)^2 - 11 is a square for all terms.
x = a(n) and y = a(n+1) satisfy x^2 + y^2 - 8*x*y = -11.
x = a(n) and y = a(n+2) satisfy x^2 + y^2 - 62*x*y = -704.

Examples

			a(3) = 8*6 - 1 = 47.
		

Crossrefs

Bisection of A237262.
Cf. A341929.

Programs

  • Mathematica
    LinearRecurrence[{8, -1}, {1,6},15]
  • PARI
    my(p=Mod('x,'x^2-8*'x+1)); a(n) = subst(lift(p^n),'x,6); \\ Kevin Ryde, Mar 01 2021

Formula

a(0) = 1; a(1) = 6; a(n) = 8*a(n-1) - a(n-2).
G.f.: (1 - 2*x)/(1 - 8*x + x^2). - Stefano Spezia, Feb 26 2021
a(n) = A237262(2*n + 1).

A335823 Triangle read by rows: A080779 with rows reversed.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 12, 6, 0, 24, 60, 40, 0, -4, 120, 360, 300, 0, -60, 0, 720, 2520, 2520, 0, -840, 0, 120, 5040, 20160, 23520, 0, -11760, 0, 3360, 0, 40320, 181440, 241920, 0, -169344, 0, 80640, 0, -12096, 362880, 1814400, 2721600, 0, -2540160, 0, 1814400, 0, -544320, 0
Offset: 1

Author

John O. Oladokun, Jun 25 2020

Keywords

Examples

			Triangle begins:
   1;
   1,  1;
   2,  3,  1;
   6, 12,  6, 0;
  24, 60, 40, 0, -4;
  ...
		

Crossrefs

Cf. A000142 (row sums).
Cf. A080779 (same triangle with rows reversed).
Cf. A027641/A027642 (Bernoulli numbers).

Programs

  • Mathematica
    Table[If[k == 0, (n - 1)!, n!*Product[n - j, {j, k - 1}]*(-1)^k*BernoulliB[k]/k!], {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Jun 27 2020 *)
  • PARI
    T(n,k) = if (k==0, (n-1)!, n!*prod(j=1,k-1, n-j)*(-1)^k*bernfrac(k)/k!);
    tabl(nn) = for(n=1, nn, for (k=0, n-1, print1(T(n,k), ", ")); print); \\ Michel Marcus, Jun 25 2020

Formula

T(n,k) = n!*(n-1)*(n-2)*...*(n-k+1)*(-1)^k*Bk/k! where Bk is a Bernoulli number and T(n,0) = (n-1)! and T(n,m) = 0 if m >= n.