A341929 Bisection of the numerators of the convergents of cf (1,1,6,1,6,1,...,6,1).
1, 2, 15, 118, 929, 7314, 57583, 453350, 3569217, 28100386, 221233871, 1741770582, 13712930785, 107961675698, 849980474799, 6691882122694, 52685076506753, 414788729931330, 3265624762943887, 25710209373619766, 202416050226014241, 1593618192434494162, 12546529489249939055, 98778617721565018278
Offset: 0
Examples
a(3) = 8*15 - 2 = 118.
Links
- Index entries for linear recurrences with constant coefficients, signature (8,-1).
Programs
-
Mathematica
LinearRecurrence [{8, -1}, {1,2}, 15]
-
PARI
my(p=Mod('x,'x^2-8*'x+1)); a(n) = subst(lift(p^n),'x,2); \\ Kevin Ryde, Feb 27 2021
Formula
a(n) = 8*a(n-1) - a(n-2) for n >= 2.
a(n) = A237262(2*n) for n >= 1.
G.f.: (1 - 6*x)/(1 - 8*x + x^2). - Stefano Spezia, Mar 01 2021
Comments