A237271 Number of parts in the symmetric representation of sigma(n).
1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 2, 4, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 4, 1, 4, 2, 2, 1, 2, 2, 5, 1, 4, 1, 2, 2, 4, 3, 2, 1, 2, 2, 4, 2, 3, 2, 2, 1, 5, 2, 2, 1, 4, 2, 4, 1, 2, 1
Offset: 1
Keywords
Examples
Illustration of initial terms (n = 1..12): --------------------------------------------------------- n A000203 A237270 a(n) Diagram --------------------------------------------------------- . _ _ _ _ _ _ _ _ _ _ _ _ 1 1 1 1 |_| | | | | | | | | | | | 2 3 3 1 |_ _|_| | | | | | | | | | 3 4 2+2 2 |_ _| _|_| | | | | | | | 4 7 7 1 |_ _ _| _|_| | | | | | 5 6 3+3 2 |_ _ _| _| _ _|_| | | | 6 12 12 1 |_ _ _ _| _| | _ _|_| | 7 8 4+4 2 |_ _ _ _| |_ _|_| _ _| 8 15 15 1 |_ _ _ _ _| _| | 9 13 5+3+5 3 |_ _ _ _ _| | _| 10 18 9+9 2 |_ _ _ _ _ _| _ _| 11 12 6+6 2 |_ _ _ _ _ _| | 12 28 28 1 |_ _ _ _ _ _ _| ... For n = 9 the sum of divisors of 9 is 1+3+9 = A000203(9) = 13. On the other hand the 9th set of symmetric regions of the diagram is formed by three regions (or parts) with 5, 3 and 5 cells, so the total number of cells is 5+3+5 = 13, equaling the sum of divisors of 9. There are three parts: [5, 3, 5], so a(9) = 3. From _Omar E. Pol_, Dec 21 2016: (Start) Illustration of the diagram of subparts (n = 1..12): --------------------------------------------------------- n A000203 A279391 A001227 Diagram --------------------------------------------------------- . _ _ _ _ _ _ _ _ _ _ _ _ 1 1 1 1 |_| | | | | | | | | | | | 2 3 3 1 |_ _|_| | | | | | | | | | 3 4 2+2 2 |_ _| _|_| | | | | | | | 4 7 7 1 |_ _ _| _ _|_| | | | | | 5 6 3+3 2 |_ _ _| |_| _ _|_| | | | 6 12 11+1 2 |_ _ _ _| _| | _ _|_| | 7 8 4+4 2 |_ _ _ _| |_ _|_| _ _ _| 8 15 15 1 |_ _ _ _ _| _| _| | 9 13 5+3+5 3 |_ _ _ _ _| | _| _| 10 18 9+9 2 |_ _ _ _ _ _| |_ _| 11 12 6+6 2 |_ _ _ _ _ _| | 12 28 23+5 2 |_ _ _ _ _ _ _| ... For n = 6 the symmetric representation of sigma(6) has two subparts: [11, 1], so A000203(6) = 12 and A001227(6) = 2. For n = 12 the symmetric representation of sigma(12) has two subparts: [23, 5], so A000203(12) = 28 and A001227(12) = 2. (End) From _Hartmut F. W. Hoft_, Dec 26 2016: (Start) Two examples of the general argument in the Comments section: Rows 27 in A237048 and A249223 (4 parts) i: 1 2 3 4 5 6 7 8 9 . . 12 27: 1 1 1 0 0 1 1's in A237048 for odd divisors 1 27 3 9 odd divisors represented 27: 1 0 1 1 1 0 0 1 1 1 0 1 blocks forming parts in A249223 Rows 81 in A237048 and A249223 (5 parts) i: 1 2 3 4 5 6 7 8 9 . . 12. . . 16. . . 20. . . 24 81: 1 1 1 0 0 1 0 0 1 0 0 0 1's in A237048 f.o.d 1 81 3 27 9 odd div. represented 81: 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 blocks fp in A249223 (End)
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Michel Marcus)
Crossrefs
Column 1 of A279387.
Partial sums give A237590.
Parity gives A347950.
Cf. A000203, A000265, A001065, A001227, A005279, A024916, A060831, A061345, A067742, A071561, A071562, A175254, A196020, A221529, A235791, A236104, A237048, A237591, A237593, A239657, A244050, A244971, A245092, A249223, A250068, A261699, A262045, A262612, A262626, A274824, A279387, A279693, A319073, A340583, A340846, A342344, A347186, A379288.
Programs
-
Mathematica
a237271[n_] := Length[a237270[n]] (* code defined in A237270 *) Map[a237271, Range[90]] (* data *) (* Hartmut F. W. Hoft, Jun 23 2014 *) a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, 1 + Count[d, ?(OddQ[#[[2]]] && #[[2]] >= 2*#[[1]] &)]]; Array[a, 100] (* _Amiram Eldar, Dec 22 2024 *)
-
PARI
fill(vcells, hga, hgb) = {ic = 1; for (i=1, #hgb, if (hga[i] < hgb[i], for (j=hga[i], hgb[i]-1, cell = vector(4); cell[1] = i - 1; cell[2] = j; vcells[ic] = cell; ic ++;););); vcells;} findfree(vcells) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);} findxy(vcells, x, y) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[1]==x) && (vcelli[2]==y) && (vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);} findtodo(vcells, iz) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == iz) && (vcelli[4] == 0), return (i)); ); return (0);} zcount(vcells) = {nbz = 0; for (i=1, #vcells, nbz = max(nbz, vcells[i][3]);); nbz;} docell(vcells, ic, iz) = {x = vcells[ic][1]; y = vcells[ic][2]; if (icdo = findxy(vcells, x-1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x+1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y-1), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y+1), vcells[icdo][3] = iz); vcells[ic][4] = 1; vcells;} docells(vcells, ic, iz) = {vcells[ic][3] = iz; while (ic, vcells = docell(vcells, ic, iz); ic = findtodo(vcells, iz);); vcells;} nbzb(n, hga, hgb) = {vcells = vector(sigma(n)); vcells = fill(vcells, hga, hgb); iz = 1; while (ic = findfree(vcells), vcells = docells(vcells, ic, iz); iz++;); zcount(vcells);} lista(nn) = {hga = concat(heights(row237593(0), 0), 0); for (n=1, nn, hgb = heights(row237593(n), n); nbz = nbzb(n, hga, hgb); print1(nbz, ", "); hga = concat(hgb, 0););} \\ with heights() also defined in A237593; \\ Michel Marcus, Mar 28 2014
-
Python
from sympy import divisors def a(n: int) -> int: divs = list(divisors(n)) d = [divs[i:i+2] for i in range(len(divs) - 1)] s = sum(1 for pair in d if len(pair) == 2 and pair[1] % 2 == 1 and pair[1] >= 2 * pair[0]) return s + 1 print([a(n) for n in range(1, 80)]) # Peter Luschny, Aug 05 2025
Formula
a(p^k) = k + 1, where p is an odd prime and k >= 0. - Hartmut F. W. Hoft, Dec 26 2016
Theorem: a(n) <= number of odd divisors of n (cf. A001227). The differences are in A239657. - N. J. A. Sloane, Jan 19 2021
Comments