cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237349 a(n) = Sum_{i=1..n} ( Product_{k|i} d(k) ), where d(n) = A000005(n).

Original entry on oeis.org

1, 3, 5, 11, 13, 29, 31, 55, 61, 77, 79, 367, 369, 385, 401, 521, 523, 811, 813, 1101, 1117, 1133, 1135, 10351, 10357, 10373, 10397, 10685, 10687, 14783, 14785, 15505, 15521, 15537, 15553, 62209, 62211, 62227, 62243, 71459, 71461, 75557, 75559, 75847, 76135
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2014

Keywords

Comments

Sum of all the products formed by multiplying together the number of divisors of each divisor of the numbers from 1 to n.
Partial sums of A211776. [Joerg Arndt, Feb 11 2014]

Examples

			a(3) = 5. Sum_{i=1..3} ( Product_{k|i} d(k) ) =
( Product_{k|1} d(k) ) + ( Product_{k|2} d(k) ) + ( Product_{k|3} d(k) ) = ( d(1) ) + ( d(1) * d(2) ) + ( d(1) * d(3) ) = 1 + (1)(2) + (1)(2) = 5.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A237349:=n->add(mul(tau(k)^(1-ceil(i/k)+floor(i/k)), k=1..i), i=1..n); seq(A237349(n), n=1..50);
  • Mathematica
    Table[Sum[Product[DivisorSigma[0, k]^(1-Ceiling[i/k]+Floor[i/k]), {k, i}], {i, n}], {n, 50}]

Formula

a(n) = Sum_{i=1..n} ( Product_{k|i} A000005(k) ).