A237351 Positive integers k such that x^2 - 5xy + y^2 + k = 0 has integer solutions.
3, 5, 12, 17, 20, 21, 27, 35, 41, 45, 47, 48, 59, 68, 75, 80, 83, 84, 89, 101, 108, 111, 119, 125, 129, 131, 140, 147, 153, 164, 167, 173, 180, 185, 188, 189, 192, 201, 215, 227, 236, 237, 243, 245, 251, 255, 257, 269, 272, 287, 293, 300, 311, 315, 320, 327
Offset: 1
Keywords
Examples
12 is in the sequence because x^2 - 5xy + y^2 + 12 = 0 has integer solutions, for example, (x, y) = (2, 8).
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Programs
-
Mathematica
Select[Range[350],Length[FindInstance[x^2-5x y+y^2+#==0,{x,y},Integers]]>0&] (* Harvey P. Dale, Apr 23 2023 *)
Comments