A237357 The number of tilings of the 3 X 3 X (2n) room with 1 X 2 X 3 boxes.
1, 6, 64, 616, 5936, 57408, 554624, 5359040, 51781696, 500337216, 4834483264, 46712942656, 451361370176, 4361255727168, 42140406169664, 407179478511680, 3934350491492416, 38015456589811776, 367322368167936064, 3549233239845138496, 34294281215843786816
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices, arXiv:1406.7788 [math.CO], eq. (57).
- Index entries for linear recurrences with constant coefficients, signature (7,22,36).
Programs
-
Maple
A237357 := proc(n) (1-x)/ (-22*x^2-7*x-36*x^3+1) ; coeftayl(%,x=0,n) ; end proc: seq(A237357(n),n=0..20) ;
-
Mathematica
CoefficientList[Series[(1 - x)/(-22 x^2 - 7 x - 36 x^3 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 08 2014 *) LinearRecurrence[{7,22,36},{1,6,64},30] (* Harvey P. Dale, Mar 20 2024 *)
Formula
G.f.: (1-x)/(-22*x^2-7*x-36*x^3+1).
Comments