A237360 Numbers n of the form p^2+p+1 (for prime p) such that n^2+n+1 is also prime.
57, 381, 993, 4557, 16257, 32943, 49953, 58323, 109893, 135057, 167691, 214833, 237657, 453603, 503391, 564753, 658533, 678153, 780573, 995007, 1248807, 1516593, 1746363, 2218611, 2400951, 3465183, 3738423, 4340973, 4750221, 5232657, 6118203
Offset: 1
Keywords
Examples
57 = 7^2+7+1 (7 is prime) and 57^2+57+1 = 3307 is also prime. Thus, 57 is a member of this sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..10000
Programs
-
Maple
for k from 1 do p := ithprime(k) ; n := numtheory[cyclotomic](3,p) ; pn := numtheory[cyclotomic](3,n) ; if isprime( pn) then print(n) ; end if; end do: # R. J. Mathar, Feb 07 2014
-
Mathematica
Select[Table[p^2+p+1,{p,Prime[Range[500]]}],PrimeQ[#^2+#+1]&] (* Harvey P. Dale, Feb 09 2014 *)
-
PARI
s=[]; forprime(p=2, 4000, if(isprime(p^4+2*p^3+4*p^2+3*p+3), s=concat(s, p^2+p+1))); s \\ Colin Barker, Feb 07 2014
-
Python
import sympy from sympy import isprime {print(n**2+n+1) for n in range(10**4) if isprime(n) and isprime((n**2+n+1)**2+(n**2+n+1)+1)}