cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237360 Numbers n of the form p^2+p+1 (for prime p) such that n^2+n+1 is also prime.

Original entry on oeis.org

57, 381, 993, 4557, 16257, 32943, 49953, 58323, 109893, 135057, 167691, 214833, 237657, 453603, 503391, 564753, 658533, 678153, 780573, 995007, 1248807, 1516593, 1746363, 2218611, 2400951, 3465183, 3738423, 4340973, 4750221, 5232657, 6118203
Offset: 1

Views

Author

Derek Orr, Feb 06 2014

Keywords

Examples

			57 = 7^2+7+1 (7 is prime) and 57^2+57+1 = 3307 is also prime. Thus, 57 is a member of this sequence.
		

Crossrefs

Programs

  • Maple
    for k from 1 do
        p := ithprime(k) ;
        n := numtheory[cyclotomic](3,p) ;
        pn := numtheory[cyclotomic](3,n) ;
        if isprime( pn) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Feb 07 2014
  • Mathematica
    Select[Table[p^2+p+1,{p,Prime[Range[500]]}],PrimeQ[#^2+#+1]&] (* Harvey P. Dale, Feb 09 2014 *)
  • PARI
    s=[]; forprime(p=2, 4000, if(isprime(p^4+2*p^3+4*p^2+3*p+3), s=concat(s, p^2+p+1))); s \\ Colin Barker, Feb 07 2014
  • Python
    import sympy
    from sympy import isprime
    {print(n**2+n+1) for n in range(10**4) if isprime(n) and isprime((n**2+n+1)**2+(n**2+n+1)+1)}