A237417 Numbers that are the product of an odiousfree number and an evilfree number.
3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 21, 23, 24, 27, 29, 30, 33, 34, 35, 36, 39, 40, 42, 43, 45, 46, 48, 51, 53, 54, 55, 57, 58, 60, 63, 65, 66, 68, 70, 71, 72, 78, 80, 83, 84, 85, 86, 89, 90, 92, 93, 95, 96, 99, 101, 102, 105, 106, 108, 110, 111, 113, 114, 116, 117, 119, 120, 123, 126, 129
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 200: # to get all terms <= N Ofree:= {$2..N}: Efree:= {$1..N/3}: for n from 2 to N do t:= convert(convert(n,base,2),`+`) mod 2; if t = 0 then Efree:= Efree minus {seq(i,i=n..N/3,n)} else Ofree:= Ofree minus {seq(i,i=n..N,n)} fi od: sort(convert(select(`<=`,{seq(seq(s*t,s=Ofree),t=Efree)},N),list)); # Robert Israel, May 09 2019
-
Mathematica
odFreeQ[n_] := AllTrue[Rest @ Divisors[n], EvenQ[DigitCount[#, 2, 1]] &]; evFreeQ[n_] := AllTrue[Divisors[n], OddQ[DigitCount[#, 2, 1]] &]; m = 100; o = Select[Range[2, m], odFreeQ]; e = Select[Range[m], evFreeQ]; Union @ Select[Times @@@ Tuples[{o, e}], # <= m &] (* Amiram Eldar, Oct 16 2020 *)
-
PARI
isA093696(n)= fordiv(n, d, if(hammingweight(d)%2==0, return(0))); 1; isA093688(n)= if (n==1, 0, sumdiv(n, d, hammingweight(d)%2)==1); lista(nn) = {vn = vector(2*nn, i, i); vof = select(n->isA093696(n), vn); vef = select(n->isA093688(n), vn); vp = []; for (i = 1, #vof, for (j = 1, #vef, vp = Set(concat(vp, vof[i]*vef[j])););); for (i = 1, #vp, if (vp[i] <= nn, print1(vp[i], ", ")););} \\ Michel Marcus, Mar 05 2014
Extensions
Definition corrected by Jon E. Schoenfield, Feb 26 2014
Comments