cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237423 Primes p such that prime(prime(p^2)) - 2 is also prime.

Original entry on oeis.org

13, 17, 167, 179, 211, 223, 337, 373, 541, 661, 743, 751, 1063, 1129, 1217, 1607, 1697, 1741, 1913, 2017, 2039, 2083, 2293, 2389, 2447, 2459, 2543, 2677, 2693, 2711, 2851, 2909, 3083, 3191, 3209, 3259, 3571, 3889, 3917
Offset: 1

Views

Author

K. D. Bajpai, Feb 07 2014

Keywords

Examples

			13 is prime and appears in the sequence because  prime(prime(13^2)) - 2  = 8009 which is also prime.
17 is prime and appears in the sequence because  prime(prime(17^2)) - 2  = 16139 which is also prime.
		

Crossrefs

Programs

  • Maple
    KD := proc() local a,b;  a:=ithprime(n);  b:=ithprime(ithprime(a^2))-2;  if isprime (b) then RETURN (a); fi;  end: seq(KD(), n=1..500);
  • Mathematica
    p[n_] := PrimeQ[Prime[Prime[n^2]] - 2]; n = 0; Do[If[p[Prime[m]], n = n + 1; Print[n, " ", Prime[m]]], {m, 1000}] (* Bajpai *)
    Select[Prime[Range[105]], PrimeQ[Prime[Prime[#^2]] - 2] &] (* Wouter Meeussen, Feb 09 2014 *)