A237428 Numbers k with following property: List all proper divisors of k. Replace any composite number in the list with its proper divisors. Repeat. Sum of remaining numbers (1's and primes) is equal to k.
6, 126, 3808, 19360, 104320, 4317184, 126764640, 1920554064, 3710312448
Offset: 1
Examples
6 is a term because: 1 + 2 + 3 = 6. 126 is a term because: [1 + 2 + 3 + (6 - 6) + 7 + (9 - 9) + (14 - 14) + (18 - 18) + (21 - 21) + (42 - 42) + (63 - 63)] + [1 + 2 + 3] + [1 + 3] + [1 + 2 + 7] + [1 + 2 + 3 + (6 - 6) + (9 - 9)] + [1 + 3 + 7] + [1 + 2 + 3 + (6 - 6) + 7 + (14 - 14) + (21 - 21)] + [1 + 3 + 7 + (9 - 9) + (21 - 21)] + [1 + 2 + 3] + [1 + 3] + [1 + 2 + 3] + [1 + 2 + 7] + [1 + 3 + 7] + [1 + 3] + [1 + 3 + 7] = 126.
Programs
-
Mathematica
v[n_] := If[PrimeQ@n, 1, Block[{s = Sum[If[e == 1 || PrimeQ@e, e, v@e], {e, Most@ Divisors@n}]}, If[n < 1000, v[n] = s, s]]]; Select[Range@ 20000, # == v@# &] (* Giovanni Resta, Feb 07 2014 *)
Extensions
a(6)-a(7) from Giovanni Resta, Feb 07 2014
a(8)-a(9) from Amiram Eldar, Jun 28 2025
Comments