A237441 Quintuple Hex-primes: let f(n) = A102489(n); then sequence lists primes p such that f(p), f(f(p)), f(f(f(p))), f(f(f(f(p)))) and f(f(f(f(f(p))))) are also primes.
2, 3, 5, 7, 61, 101, 196853, 516151, 548239, 568627, 595039, 603833, 648887, 1996223, 2086907, 2487227, 3322757, 3711343, 4385137, 5226049, 5288929, 5853241, 8792039, 8796187, 8982191, 10203203, 12640297, 12664129, 12845561, 13156267, 13437481, 14342431
Offset: 1
Examples
Dec61=prime -> Hex61=Dec97=prime -> Hex97=Dec151=prime -> Hex151=Dec337=prime -> Hex337=Dec823=prime -> Hex823=Dec2083=prime.
Crossrefs
Programs
-
PARI
hd(n) = my(d = digits(n)); sum(i=1, #d, 16^(i-1)*d[#d-i+1]); isok(p) = isprime(p) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)); \\ Michel Marcus, Feb 08 2014
Extensions
More terms from Michel Marcus, Feb 08 2014
Comments