cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237516 Pyramidal centered square numbers.

Original entry on oeis.org

1, 15, 91, 325, 861, 1891, 3655, 6441, 10585, 16471, 24531, 35245, 49141, 66795, 88831, 115921, 148785, 188191, 234955, 289941, 354061, 428275, 513591, 611065, 721801, 846951, 987715, 1145341, 1321125, 1516411, 1732591, 1971105, 2233441, 2521135, 2835771, 3178981, 3552445, 3957891, 4397095, 4871881
Offset: 1

Views

Author

Kival Ngaokrajang, Feb 08 2014

Keywords

Comments

a(n) is sum of natural numbers filled in order-n diamond.
First differences give A173962.
The unique primitive Pythagorean triple whose inradius T(n) and its long leg and hypotenuse are consecutive natural numbers is (2*T(n)+1, 2*T(n)*(T(n)+1), 2*T(n)*(T(n)+1)+1) and its semiperimeter is (T(n)+1)*(2*T(n)+1) where T(n) = A002378(n). - Miguel-Ángel Pérez García-Ortega, Jun 05 2025

Crossrefs

Programs

  • Mathematica
    Table[Sum[i, {i, 2n(n + 1) + 1}], {n, 0, 29}] (* Alonso del Arte, Feb 09 2014 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,15,91,325,861},60] (* Harvey P. Dale, Apr 21 2018 *)
    a=Table[(n(n+1)),{n,0,29}];Apply[Join,Map[{(#+1)(2#+1)}&,a]] (* Miguel-Ángel Pérez García-Ortega, Jun 05 2025 *)
  • PARI
    Vec(-x*(x^2+4*x+1)*(x^2+6*x+1)/(x-1)^5 + O(x^100)) \\ Colin Barker, Jan 17 2015

Formula

a(n) = 2*n^4 - 4*n^3 + 5*n^2 - 3*n + 1.
a(n) = Sum_{i = 1..(2*n*(n + 1) + 1)} i.
From Colin Barker, Jan 17 2015: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -x*(x^2+4*x+1)*(x^2+6*x+1)/(x-1)^5. (End)
a(n) = A000217(A001844(n-1)). - Ivan N. Ianakiev, Jun 14 2015
a(n) = A002061(n)*A001844(n-1). - Bruce J. Nicholson, May 14 2017
a(n) = (A002378(n)+1)*(2*A002378(n)+1). - Miguel-Ángel Pérez García-Ortega, Jun 05 2025
E.g.f.: -1 + exp(x)*(1 + 7*x^2 + 8*x^3 + 2*x^4). - Elmo R. Oliveira, Aug 22 2025