cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237520 Irregular triangular array read by rows: T(n,k) is the number of n-step walks (steps +1,-1) on the x-axis beginning at the origin that are on the origin for the last time on step 2k, n>=0, 0<=k<=floor(n/2).

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 6, 4, 6, 12, 8, 12, 20, 12, 12, 20, 40, 24, 24, 40, 70, 40, 36, 40, 70, 140, 80, 72, 80, 140, 252, 140, 120, 120, 140, 252, 504, 280, 240, 240, 280, 504, 924, 504, 420, 400, 420, 504, 924, 1848, 1008, 840, 800, 840, 1008, 1848, 3432, 1848, 1512, 1400, 1400, 1512, 1848
Offset: 0

Views

Author

Geoffrey Critzer, Feb 08 2014

Keywords

Comments

Column k=0 is A063886.
Row sums give A000079.

Examples

			1;
2;
2,   2;
4,   4;
6,   4,   6;
12,  8,   12;
20,  12,  12,  20;
40,  24,  24,  40;
70,  40,  36,  40,  70;
140, 80,  72,  80,  140;
252, 140, 120, 120, 140, 252;
T(4,1) = 4 because we have: (-1,+1,-1,-1), (-1,+1,+1,+1), (+1,-1,-1,-1), (+1,-1,+1,+1). These walks have 4 steps and are on the origin for the last time on step 2*1=2.
		

Crossrefs

Cf. A067804.

Programs

  • Maple
    T:= (n, k)-> 2^irem(n, 2)*binomial(2*k, k)*
        binomial(2*iquo(n, 2)-2*k, iquo(n, 2)-k):
    seq(seq(T(n, k), k=0..iquo(n, 2)), n=0..14);  # Alois P. Heinz, May 10 2014
  • Mathematica
    nn=20;d=(1-(1-4x^2)^(1/2))/(2x^2);Map[Select[#,#>0&]&,Transpose[Table[ CoefficientList[Series[Binomial[2n,n]x^(2n)(1-2x^2d)/(1-2x),{x,0,nn}],x],{n,0,nn/2}]]]//Grid
    (* or *)
    f[list_]:=If[Max[Flatten[Position[list,0]]]== -Infinity,0,Max[Flatten[ Position[list,0]]]]; Table[Distribution[Map[f,Map[Accumulate, Strings[{-1,1},n]]]],{n,0,10}]//Grid

Formula

G.f. for column k: binomial(2k,k) x^k*A(x) where A(x) is the o.g.f. for A063886.