A237641 Primes p of the form n^2-n-1 (for prime n) such that p^2-p-1 is also prime.
5, 236681, 380071, 457651, 563249, 1441199, 1660231, 2491661, 3050261, 4106701, 5137021, 5146091, 5329171, 10617821, 15574861, 19860391, 20852921, 21349019, 21497131, 23025601, 24507449, 32495699, 36342811, 48867089, 51129649, 59082281
Offset: 1
Keywords
Examples
5 = 3^2-3^1-1 (3 is prime) and 5^2-5-1 = 19 is prime. Since 5 is prime too, 5 is a member of this sequence.
Programs
-
Mathematica
Select[Table[n^2-n-1,{n,Prime[Range[1000]]}],AllTrue[{#,#^2-#-1},PrimeQ]&] (* Harvey P. Dale, Aug 14 2024 *)
-
PARI
s=[]; forprime(n=2, 40000, p=n^2-n-1; if(isprime(p) && isprime(p^2-p-1), s=concat(s, p))); s \\ Colin Barker, Feb 11 2014
-
Python
import sympy from sympy import isprime def poly2(x): if isprime(x): f = x**2-x-1 if isprime(f**2-f-1): return True return False x = 1 while x < 10**5: if poly2(x): if isprime(x**2-x-1): print(x**2-x-1) x += 1
Comments