A237585 Number of structures of size n in class A = o x (o + MSET(A)) where o is a neutral structure of size 1.
0, 1, 2, 3, 6, 15, 36, 94, 245, 663, 1815, 5062, 14269, 40706, 117103, 339673, 991834, 2913869, 8605576, 25536300, 76096896, 227634717, 683296679, 2057540487, 6213495745, 18813535942, 57103173296, 173710272584, 529534793886, 1617347972250, 4948744120771
Offset: 0
Keywords
Examples
For n = 3 the a(3)=3 pointers are the pointer to the multiset of exactly the pointer to the null pointer, the pointer to the multiset of twice the pointer to the empty multiset, and the pointer to the multiset of exactly the pointer to the multiset of the pointer to the empty multiset. From _Andrew Howroyd_, Mar 02 2020: (Start) The a(2) = 2 trees are: 2, (1). The a(3) = 3 trees are: (2), (11), ((1)). The a(4) = 6 trees are: ((2)), (12), (111), ((11)), (1(1)), (((1))). (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009
- Sarah Nibs, C# program to generate sequence
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} seq(n)={my(v=[1]); for(n=2, n, v=concat([1], EulerT(v)); v[2]++); concat([0],v)} \\ Andrew Howroyd, Mar 02 2020
Formula
G.f. A(x) satisfies: A(x) = x * (x + exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...)). - Ilya Gutkovskiy, Jun 11 2021
Extensions
Terms a(21) and beyond from Andrew Howroyd, Mar 02 2020
Comments