cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237585 Number of structures of size n in class A = o x (o + MSET(A)) where o is a neutral structure of size 1.

Original entry on oeis.org

0, 1, 2, 3, 6, 15, 36, 94, 245, 663, 1815, 5062, 14269, 40706, 117103, 339673, 991834, 2913869, 8605576, 25536300, 76096896, 227634717, 683296679, 2057540487, 6213495745, 18813535942, 57103173296, 173710272584, 529534793886, 1617347972250, 4948744120771
Offset: 0

Views

Author

Sarah Nibs, Feb 09 2014

Keywords

Comments

MSET(A) is the multi-choose function: pick any number of unlabeled structures in A with repetition allowed.
Interpreting the neutral structure of size 1 as a single pointer dereference, A is the class of A-pointers either to null pointers or to a multiset of unlabeled A-pointers, where the size of a pointer is the number of dereferences required to resolve the entire structure, so a null pointer has size 1 and an A-pointer to a null pointer has size 2 and an A-pointer to {A-pointer(null), A-pointer(null), A-pointer({A-pointer(null)})} has size 1+((1+1)+(1+1)+(1+(1+1)))=8.
a(n) is the number of rooted trees of weight n where leaves can have either weight 1 or 2 and non-leaves have weight 1. - Andrew Howroyd, Mar 02 2020

Examples

			For n = 3 the a(3)=3 pointers are the pointer to the multiset of exactly the pointer to the null pointer, the pointer to the multiset of twice the pointer to the empty multiset, and the pointer to the multiset of exactly the pointer to the multiset of the pointer to the empty multiset.
From _Andrew Howroyd_, Mar 02 2020: (Start)
The a(2) = 2 trees are: 2, (1).
The a(3) = 3 trees are: (2), (11), ((1)).
The a(4) = 6 trees are: ((2)), (12), (111), ((11)), (1(1)), (((1))).
(End)
		

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(n=2, n, v=concat([1], EulerT(v)); v[2]++); concat([0],v)} \\ Andrew Howroyd, Mar 02 2020

Formula

G.f. A(x) satisfies: A(x) = x * (x + exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...)). - Ilya Gutkovskiy, Jun 11 2021

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 02 2020