A237613 Numbers k such that tau(sigma(tau(k))) = sigma(tau(sigma(k))), where tau is A000005 and sigma is A000203.
1, 4, 9, 25, 81, 289, 1681, 3481, 5041, 7921, 10201, 17161, 27889, 29929, 85849, 146689, 331776, 458329, 491401, 552049, 579121, 597529, 683929, 703921, 734449, 786432, 829921, 1190281, 1203409, 1352569, 1394761, 1423249, 1481089, 1885129, 2036329, 2211169
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..100
Programs
-
Magma
[k:k in [1..2300000]| #Divisors(SumOfDivisors(#Divisors(k))) eq SumOfDivisors(#Divisors(SumOfDivisors(k)))]; // Marius A. Burtea, Aug 17 2019
-
Maple
with(numtheory); P:=proc(q) local n; for n from 1 to q do if tau(sigma(tau(n)))=sigma(tau(sigma(n))) then print(n); fi; od; end: P(10^6);
-
Mathematica
s = {}; Do[If[DivisorSigma[1, DivisorSigma[0, DivisorSigma[1, n]]] == DivisorSigma[0, DivisorSigma[1, DivisorSigma[0, n]]], AppendTo[s, n]], {n, 1, 2500000}]; s (* Amiram Eldar, Aug 17 2019 *) With[{ds=DivisorSigma},Select[Range[2220000],ds[0,ds[1,ds[0,#]]]==ds[1,ds[0,ds[1,#]]]&]] (* Harvey P. Dale, Nov 04 2024 *)
-
PARI
s=[]; for(n=1, 2500000, if(sigma(sigma(sigma(n, 0)), 0) == sigma(sigma(sigma(n), 0)), s=concat(s, n))); s \\ Colin Barker, Feb 10 2014
Comments