cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237613 Numbers k such that tau(sigma(tau(k))) = sigma(tau(sigma(k))), where tau is A000005 and sigma is A000203.

Original entry on oeis.org

1, 4, 9, 25, 81, 289, 1681, 3481, 5041, 7921, 10201, 17161, 27889, 29929, 85849, 146689, 331776, 458329, 491401, 552049, 579121, 597529, 683929, 703921, 734449, 786432, 829921, 1190281, 1203409, 1352569, 1394761, 1423249, 1481089, 1885129, 2036329, 2211169
Offset: 1

Views

Author

Paolo P. Lava, Feb 10 2014

Keywords

Comments

The squares of the terms of A053182 are a subset of this sequence. In fact, in general, if p is prime we have tau(p)=2 and tau(p^2)=3. Therefore tau(p^2)=3 -> sigma(3)=4 -> tau(4)=tau(2^2)=3 and if p belongs to A053182 we also have that sigma(p^2)=p^2+p+1 (prime) -> tau(p^2+p+1)=2 -> sigma(2)=3.

Crossrefs

Programs

  • Magma
    [k:k in [1..2300000]| #Divisors(SumOfDivisors(#Divisors(k))) eq SumOfDivisors(#Divisors(SumOfDivisors(k)))]; // Marius A. Burtea, Aug 17 2019
  • Maple
    with(numtheory); P:=proc(q) local n;
    for n from 1 to q do
      if tau(sigma(tau(n)))=sigma(tau(sigma(n))) then print(n); fi;
    od; end: P(10^6);
  • Mathematica
    s = {}; Do[If[DivisorSigma[1, DivisorSigma[0, DivisorSigma[1, n]]] == DivisorSigma[0, DivisorSigma[1, DivisorSigma[0, n]]], AppendTo[s, n]], {n, 1, 2500000}]; s (* Amiram Eldar, Aug 17 2019 *)
    With[{ds=DivisorSigma},Select[Range[2220000],ds[0,ds[1,ds[0,#]]]==ds[1,ds[0,ds[1,#]]]&]] (* Harvey P. Dale, Nov 04 2024 *)
  • PARI
    s=[]; for(n=1, 2500000, if(sigma(sigma(sigma(n, 0)), 0) == sigma(sigma(sigma(n), 0)), s=concat(s, n))); s \\ Colin Barker, Feb 10 2014