cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237627 Semiprimes of the form n^3 + n^2 + n + 1.

Original entry on oeis.org

4, 15, 85, 259, 1111, 4369, 47989, 65641, 291919, 2016379, 2214031, 3397651, 3820909, 5864581, 9305311, 13881841, 15687751, 16843009, 19756171, 22030681, 28746559, 62256349, 64160401, 74264821, 79692331, 101412319, 117889591, 172189309, 185518471, 191435329
Offset: 1

Views

Author

K. D. Bajpai, Apr 22 2014

Keywords

Comments

All the terms in the sequence, except a(1), are odd.
Since n^3 + n^2 + n + 1 = (n^2 + 1)(n + 1), it is a necessary condition for n^2 + 1 to be a prime, and n + 1 as well. - Alonso del Arte, Apr 22 2014

Examples

			85 is in the sequence since 4^3 + 4^2 + 4 + 1 = 85 = 5 * 17, which is a semiprime.
259 is in the sequence since 6^3 + 6^2 + 6 + 1 = 259 = 7 * 37 which is a semiprime.
585 is not in the sequence, because, although it is 8^3 + 8^2 + 8 + 1, it has more than two prime factors.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [s: n in [1..1000] | IsSemiprime(s) where s is n^3+n^2+n+1]; // Bruno Berselli, Apr 23 2014
    
  • Maple
    select(x-> numtheory[bigomega](x)=2, [n^3+n^2+n+1$n=1..1500])[];
  • Mathematica
    A237627 = {}; Do[t = n^3 + n^2 + n + 1; If[PrimeOmega[t] == 2, AppendTo[A237627, t]], {n, 1500}]; A237627 (* K. D. Bajpai *)
    (* For the b-file: *) n = 0; Do[t = k^3 + k^2 + k + 1; If[PrimeOmega[t] == 2, n++; Print[n, " ", t]], {k, 300000}] (* K. D. Bajpai *)
    Select[Table[n^3 + n^2 + n + 1, {n, 500}], PrimeOmega[#] == 2 &] (* Alonso del Arte, Apr 22 2014 *)
  • PARI
    is(n)=isprime(n^2+1) && isprime(n+1) \\ Charles R Greathouse IV, Aug 25 2014
    
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def A237627_gen(): # generator of terms
        p = 1
        while (p:=nextprime(p)):
            if isprime((p-1)**2+1):
                yield p*((p-1)**2+1)
    A237627_list = list(islice(A237627_gen(),20)) # Chai Wah Wu, Feb 27 2023
  • Sage
    A237627 = list(n^3 + n^2 + n + 1 for n in (1..1000) if is_prime(n^2+1) and is_prime(n+1)); print(A237627) # Bruno Berselli, Apr 23 2014 - see comment by Alonso del Arte
    

Formula

Union of {4} and the members of A176070. - R. J. Mathar, Oct 04 2018