cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237646 G.f.: exp( Sum_{n>=1} A163659(n^3)*x^n/n ), where x*exp(Sum_{n>=1} A163659(n)*x^n/n) = S(x) is the g.f. of Stern's diatomic series (A002487).

Original entry on oeis.org

1, 1, 8, 7, 63, 56, 329, 273, 1736, 1463, 7511, 6048, 32585, 26537, 124440, 97903, 475287, 377384, 1658881, 1281497, 5783960, 4502463, 18825023, 14322560, 61171649, 46849089, 188181672, 141332583, 577889023, 436556440, 1696298665, 1259742225, 4970284200, 3710541975, 14019036535, 10308494560
Offset: 0

Views

Author

Paul D. Hanna, May 03 2014

Keywords

Comments

Compare to the g.f. of A195586.

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 7*x^3 + 63*x^4 + 56*x^5 + 329*x^6 + 273*x^7 +...
where
log(A(x)) = x + 15*x^2/2 - 2*x^3/3 + 127*x^4/4 + x^5/5 - 30*x^6/6 + x^7/7 + 1023*x^8/8 +...+ A237649(n)*x^n/n +...
Bisections: let A(x) = B(x^2) + x*C(x^2), then:
B(x) = 1 + 8*x + 63*x^2 + 329*x^3 + 1736*x^4 + 7511*x^5 + 32585*x^6 +...
C(x) = 1 + 7*x + 56*x^2 + 273*x^3 + 1463*x^4 + 6048*x^5 + 26537*x^6 + 97903*x^7 + 377384*x^8 + 1281497*x^9 + 4502463*x^10 +...+ A237647(n)*x^n +...
Note that C(x)^(1/7) = (1+x+x^2) * C(x^2)^(4/7) is an integer series:
C(x)^(1/7) = 1 + x + 5*x^2 + 4*x^3 + 30*x^4 + 26*x^5 + 106*x^6 + 80*x^7 + 459*x^8 + 379*x^9 + 1451*x^10 + 1072*x^11 + 5210*x^12 +...+ A237648(n)*x^n +...
Also, C(x) / (1+x+x^2)^3 = A(x)^4:
A(x)^4 = 1 + 4*x + 38*x^2 + 128*x^3 + 817*x^4 + 2536*x^5 + 12890*x^6 +...
Further, C(x)*C(x^2)^3 = A(x)^7:
A(x)^7 = 1 + 7*x + 77*x^2 + 420*x^3 + 2954*x^4 + 13986*x^5 + 78414*x^6 +...
The g.f. may be expressed by the product:
A(x) = (1+x+x^2) * (1+x^2+x^4)^7 * (1+x^4+x^8)^28 * (1+x^8+x^16)^112 * (1+x^16+x^32)^448 *...* (1 + x^(2*2^n) + x^(4*2^n))^(7*4^n) *...
		

Crossrefs

Programs

  • PARI
    {A163659(n)=if(n<1, 0, if(n%3, 1, -2)*sigma(2^valuation(n, 2)))}
    {a(n)=polcoeff(exp(sum(k=1, n, A163659(k^3)*x^k/k)+x*O(x^n)), n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} A237649(n)*x^n/n ), where A237649(n) = A163659(n^3).
G.f. A(x) satisfies:
(1) A(x) = (1+x+x^2) * (1+x^2+x^4)^3 * A(x^2)^4.
(2) A(x) = (1+x+x^2) * Product_{n>=0} ( 1 + x^(2*2^n) + x^(4*2^n) )^(7*4^n).
(3) A(x) / A(-x) = (1+x+x^2) / (1-x+x^2).
Bisections: let A(x) = B(x^2) + x*C(x^2), then
(4) B(x) = (1+x) * C(x).
(5) C(x) = (1+x+x^2)^7 * C(x^2)^4.
(6) A(x) = (1+x+x^2) * C(x^2).
(7) A(x)^7 = C(x) * C(x^2)^3.
(8) A(x)^4 = C(x) / (1+x+x^2)^3.
(9) A(x)^3 = ( C(x)/A(x) - C(x^2)^4/A(x^2)^4 ) / (6*x + 14*x^3 + 6*x^5).