A237649 a(n) = A163659(n^3), where A163659 is the logarithmic derivative of Stern's diatomic series (A002487).
1, 15, -2, 127, 1, -30, 1, 1023, -2, 15, 1, -254, 1, 15, -2, 8191, 1, -30, 1, 127, -2, 15, 1, -2046, 1, 15, -2, 127, 1, -30, 1, 65535, -2, 15, 1, -254, 1, 15, -2, 1023, 1, -30, 1, 127, -2, 15, 1, -16382, 1, 15, -2, 127, 1, -30, 1, 1023, -2, 15, 1, -254, 1, 15, -2, 524287, 1, -30, 1, 127
Offset: 1
Examples
L.g.f.: L(x) = x + 15*x^2/2 - 2*x^3/3 + 127*x^4/4 + x^5/5 - 30*x^6/6 + x^7/7 + 1023*x^8/8 +...+ A163659(n^3)*x^n/n +... where exp(L(x)) = 1 + x + 8*x^2 + 7*x^3 + 63*x^4 + 56*x^5 + 329*x^6 + 273*x^7 + 1736*x^8 +...+ A237646(n)*x^n +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..1000
Programs
Formula
L.g.f.: log(1+x+x^2) + Sum_{n>=0} 7*4^n * log(1 + x^(2*2^n) + x^(4*2^n)) = Sum_{n>=1} a(n)*x^n/n.
G.f.: x*(1+2*x)/(1+x+x^2) + Sum_{n>=0} 14*8^n * x^(2*2^n) * (1 + 2*x^(2*2^n)) / (1 + x^(2*2^n) + x^(4*2^n)).
Comments