A237650 G.f. satisfies: A(x) = (1+x+x^2)^3 * A(x^2)^2.
1, 3, 12, 25, 75, 144, 357, 615, 1380, 2285, 4767, 7488, 14817, 22707, 43068, 63769, 116667, 169584, 301589, 427815, 741396, 1037149, 1761087, 2418432, 4025153, 5465955, 8956716, 11986009, 19330347, 25633296, 40835973, 53508711, 84129156, 109392269, 170278047, 219206976
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 3*x + 12*x^2 + 25*x^3 + 75*x^4 + 144*x^5 + 357*x^6 +... where: A(x) = (1+x+x^2)^3 * (1+x^2+x^4)^6 * (1+x^4+x^8)^12 * (1+x^8+x^16)^24 * (1+x^16+x^32)^48 *...* (1 + x^(2^n) + x^(2*2^n))^(3*2^n) *...
Programs
-
PARI
{a(n)=local(A=1+x);for(i=1,#binary(n),A=(1+x+x^2)^3*subst(A^2,x,x^2) +x*O(x^n));polcoeff(A,n)} for(n=0,50,print1(a(n),", "))
-
PARI
{a(n)=local(A=1+x);A=prod(k=0,#binary(n),(1+x^(2^k)+x^(2*2^k)+x*O(x^n))^(3*2^k));polcoeff(A,n)} for(n=0,50,print1(a(n),", "))