cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A195586 G.f.: exp( Sum_{n>=1} A163659(n^2)*x^n/n ), where x*exp(Sum_{n>=1} A163659(n)*x^n/n) = S(x) is the g.f. of Stern's diatomic series (A002487).

Original entry on oeis.org

1, 1, 4, 3, 15, 12, 37, 25, 100, 75, 219, 144, 501, 357, 972, 615, 1995, 1380, 3665, 2285, 7052, 4767, 12255, 7488, 22305, 14817, 37524, 22707, 65775, 43068, 106837, 63769, 180436, 116667, 286251, 169584, 471173, 301589, 729404, 427815, 1169211, 741396, 1778545, 1037149
Offset: 0

Views

Author

Paul D. Hanna, Sep 20 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 3*x^3 + 15*x^4 + 12*x^5 + 37*x^6 + 25*x^7 +...
where
log(A(x)) = x + 7*x^2/2 - 2*x^3/3 + 31*x^4/4 + x^5/5 - 14*x^6/6 + x^7/7 + 127*x^8/8 +...+ A195587(n)*x^n/n +...
Let C(x) be the odd bisection of g.f. A(x):
C(x) = 1 + 3*x + 12*x^2 + 25*x^3 + 75*x^4 + 144*x^5 + 357*x^6 + 615*x^7 + 1380*x^8 + 2285*x^9 + 4767*x^10 + 7488*x^11 + 14817*x^12 +...+ A237650(n)*x^n +...
then C(x) equals the cube of an integer series:
C(x)^(1/3) = 1 + x + 3*x^2 + 2*x^3 + 9*x^4 + 7*x^5 + 17*x^6 + 10*x^7 + 41*x^8 + 31*x^9 + 75*x^10 + 44*x^11 + 150*x^12 +...+ A237651(n)*x^n +...
which equals A(x)/C(x^2)^(1/3).
The g.f. may be expressed by the product:
A(x) = (1+x+x^2) * (1+x^2+x^4)^3 * (1+x^4+x^8)^6 * (1+x^8+x^16)^12 * (1+x^16+x^32)^24 *...* (1 + x^(2*2^n) + x^(4*2^n))^(3*2^n) *...
		

Crossrefs

Programs

  • PARI
    {A163659(n)=if(n<1,0,if(n%3,1,-2)*sigma(2^valuation(n,2)))}
    {a(n)=polcoeff(exp(sum(k=1, n, A163659(k^2)*x^k/k)+x*O(x^n)), n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    /* G.f.: A(x) = (1+x+x^2) * (1+x^2+x^4) * A(x^2)^2: */
    {a(n)=local(A=1+x); for(i=1, #binary(n), A=(1+x+x^2)*(1+x^2+x^4)*subst(A^2, x, x^2) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    /* G.f.: (1+x+x^2) * Product_{n>=0} (1 + x^(2*2^n) + x^(4*2^n))^(3*2^n): */
    {a(n)=local(A=1+x); A=(1+x+x^2)*prod(k=0, #binary(n), (1+x^(2*2^k)+x^(4*2^k)+x*O(x^n))^(3*2^k)); polcoeff(A, n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} A195587(n)*x^n/n ), where A195587(n) = A163659(n^2).
G.f. A(x) satisfies:
(1) A(x) = (1+x+x^2) * (1+x^2+x^4) * A(x^2)^2.
(2) A(x) = (1+x+x^2) * Product_{n>=0} ( 1 + x^(2*2^n) + x^(4*2^n) )^(3*2^n).
(3) A(x) / A(-x) = (1+x+x^2) / (1-x+x^2).
Bisections: let A(x) = B(x^2) + x*C(x^2), then
(4) B(x) = (1+x) * C(x).
(5) C(x) = (1+x+x^2)^3 * C(x^2)^2.
(6) A(x) = (1+x+x^2) * C(x^2).
(7) A(x)^3 = C(x) * C(x^2).
(8) A(x)^2 = C(x) / (1+x+x^2).
(9) A(x) = ( C(x)/A(x) - C(x^2)^2/A(x^2)^2 ) / (2*x).

Extensions

Entry and formulas revised by Paul D. Hanna, May 04 2014

A237651 G.f. satisfies: A(x) = (1+x+x^2) * A(x^2)^2.

Original entry on oeis.org

1, 1, 3, 2, 9, 7, 17, 10, 41, 31, 75, 44, 150, 106, 238, 132, 445, 313, 711, 398, 1251, 853, 1859, 1006, 3135, 2129, 4677, 2548, 7590, 5042, 10734, 5692, 16865, 11173, 23979, 12806, 36911, 24105, 50551, 26446, 75985, 49539, 104683, 55144, 155140, 99996, 207188, 107192, 300766, 193574, 403994
Offset: 0

Views

Author

Paul D. Hanna, May 04 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 2*x^3 + 9*x^4 + 7*x^5 + 17*x^6 + 10*x^7 +...
where:
A(x) = (1+x+x^2) * (1+x^2+x^4)^2 * (1+x^4+x^8)^4 * (1+x^8+x^16)^8 * (1+x^16+x^32)^16 *...* (1 + x^(2^n) + x^(2*2^n))^(2^n) *...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,#binary(n),A=(1+x+x^2)*subst(A^2,x,x^2) +x*O(x^n));polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x);A=prod(k=0,#binary(n),(1+x^(2^k)+x^(2*2^k)+x*O(x^n))^(2^k));polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))

Formula

The odd-indexed bisection equals the self-convolution of this sequence.
The self-convolution cube yields A237650, the odd-indexed bisection of A195586.
G.f. A(x) satisfies:
(1) A(x) = Product_{n>=0} ( 1 + x^(2^n) + x^(2*2^n) )^(2^n).
(2) A(x) / A(-x) = (1+x+x^2) / (1-x+x^2).

A237647 G.f. satisfies: A(x) = (1 + x + x^2)^7 * A(x^2)^4.

Original entry on oeis.org

1, 7, 56, 273, 1463, 6048, 26537, 97903, 377384, 1281497, 4502463, 14322560, 46849089, 141332583, 436556440, 1259742225, 3710541975, 10308494560, 29165172617, 78396244591, 214217633672, 559335671353, 1482519853311, 3772127020032, 9731443674113, 24191903115079, 60918829766648
Offset: 0

Views

Author

Paul D. Hanna, May 04 2014

Keywords

Examples

			G.f.: A(x) = 1 + 7*x + 56*x^2 + 273*x^3 + 1463*x^4 + 6048*x^5 + 26537*x^6 +...
where:
A(x) = (1+x+x^2)^7 * (1+x^2+x^4)^28 * (1+x^4+x^8)^112 * (1+x^8+x^16)^448 * (1+x^16+x^32)^896 *...* (1 + x^(2^n) + x^(2*2^n))^(7*4^n) *...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,#binary(n),A=(1+x+x^2)^7*subst(A^4,x,x^2) +x*O(x^n));polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x);A=prod(k=0,#binary(n),(1+x^(2^k)+x^(2*2^k)+x*O(x^n))^(7*4^k));polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))

Formula

The odd-indexed bisection of A237646.
The 7th self-convolution of A237648.
G.f. A(x) satisfies:
(1) A(x) = Product_{n>=0} ( 1 + x^(2^n) + x^(2*2^n) )^(7*4^n).
(2) A(x) / A(-x) = (1+x+x^2)^7 / (1-x+x^2)^7.
Showing 1-3 of 3 results.