A237651 G.f. satisfies: A(x) = (1+x+x^2) * A(x^2)^2.
1, 1, 3, 2, 9, 7, 17, 10, 41, 31, 75, 44, 150, 106, 238, 132, 445, 313, 711, 398, 1251, 853, 1859, 1006, 3135, 2129, 4677, 2548, 7590, 5042, 10734, 5692, 16865, 11173, 23979, 12806, 36911, 24105, 50551, 26446, 75985, 49539, 104683, 55144, 155140, 99996, 207188, 107192, 300766, 193574, 403994
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 2*x^3 + 9*x^4 + 7*x^5 + 17*x^6 + 10*x^7 +... where: A(x) = (1+x+x^2) * (1+x^2+x^4)^2 * (1+x^4+x^8)^4 * (1+x^8+x^16)^8 * (1+x^16+x^32)^16 *...* (1 + x^(2^n) + x^(2*2^n))^(2^n) *...
Programs
-
PARI
{a(n)=local(A=1+x);for(i=1,#binary(n),A=(1+x+x^2)*subst(A^2,x,x^2) +x*O(x^n));polcoeff(A,n)} for(n=0,50,print1(a(n),", "))
-
PARI
{a(n)=local(A=1+x);A=prod(k=0,#binary(n),(1+x^(2^k)+x^(2*2^k)+x*O(x^n))^(2^k));polcoeff(A,n)} for(n=0,50,print1(a(n),", "))
Comments