cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237664 Interpolation polynomial through n+1 points (0,1), (1,1), ..., (n-1,1) and (n,n) evaluated at 2n.

Original entry on oeis.org

0, 1, 7, 41, 211, 1009, 4621, 20593, 90091, 388961, 1662805, 7054321, 29745717, 124807201, 521515801, 2171645281, 9016205851, 37337699521, 154277300101, 636214748401, 2619084047581, 10765157488801, 44186078238121, 181135476007201, 741694884711301
Offset: 0

Views

Author

Alois P. Heinz, Feb 11 2014

Keywords

Crossrefs

Cf. A000290 (evaluated at n+1), A127736 (at n+2), A237622 (n points).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
           ((n-1)*(3*n-4)*(5*n-3) *a(n-1)
            -2*(2*n-3)*(3*n^2-4*n+2) *a(n-2))/
            (n*(3*n^2-10*n+9)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    CoefficientList[Series[(6*x-1)/Sqrt[1-4*x]^3-1/(x-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 14 2014 *)
    a[n_] := Module[{m}, InterpolatingPolynomial[Table[{k, If[k == n, n, 1]}, {k, 0, n}], m] /. m -> 2n];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 22 2020 *)

Formula

G.f.: (6*x-1)/sqrt(1-4*x)^3 - 1/(x-1).
a(n) ~ sqrt(n)*4^n/sqrt(Pi). - Vaclav Kotesovec, Feb 14 2014
From Gregory Morse, Mar 19 2021: (Start)
a(n) = (2*n)!*(n-1)/(n!)^2 + 1.
a(n) = A030662(n-1)*(n-1) + n, for n > 0. (End)
E.g.f.: exp(x) * (1 - exp(x) * ((1 - 2*x) * BesselI(0,2*x) - 2 * x * BesselI(1,2*x))). - Ilya Gutkovskiy, Nov 19 2021