A237664 Interpolation polynomial through n+1 points (0,1), (1,1), ..., (n-1,1) and (n,n) evaluated at 2n.
0, 1, 7, 41, 211, 1009, 4621, 20593, 90091, 388961, 1662805, 7054321, 29745717, 124807201, 521515801, 2171645281, 9016205851, 37337699521, 154277300101, 636214748401, 2619084047581, 10765157488801, 44186078238121, 181135476007201, 741694884711301
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, ((n-1)*(3*n-4)*(5*n-3) *a(n-1) -2*(2*n-3)*(3*n^2-4*n+2) *a(n-2))/ (n*(3*n^2-10*n+9))) end: seq(a(n), n=0..30);
-
Mathematica
CoefficientList[Series[(6*x-1)/Sqrt[1-4*x]^3-1/(x-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 14 2014 *) a[n_] := Module[{m}, InterpolatingPolynomial[Table[{k, If[k == n, n, 1]}, {k, 0, n}], m] /. m -> 2n]; a /@ Range[0, 30] (* Jean-François Alcover, Dec 22 2020 *)
Formula
G.f.: (6*x-1)/sqrt(1-4*x)^3 - 1/(x-1).
a(n) ~ sqrt(n)*4^n/sqrt(Pi). - Vaclav Kotesovec, Feb 14 2014
From Gregory Morse, Mar 19 2021: (Start)
a(n) = (2*n)!*(n-1)/(n!)^2 + 1.
a(n) = A030662(n-1)*(n-1) + n, for n > 0. (End)
E.g.f.: exp(x) * (1 - exp(x) * ((1 - 2*x) * BesselI(0,2*x) - 2 * x * BesselI(1,2*x))). - Ilya Gutkovskiy, Nov 19 2021