A237711 The number of P-positions in the game of Nim with up to four piles, allowing for piles of zero, such that the total number of objects in all piles is 2n.
1, 6, 7, 36, 13, 42, 43, 216, 49, 78, 55, 252, 85, 258, 259, 1296, 265, 294, 127, 468, 133, 330, 307, 1512, 337, 510, 343, 1548, 517, 1554, 1555, 7776, 1561, 1590, 559, 1764, 421, 762, 595, 2808, 601, 798, 463, 1980, 637, 1842, 1819, 9072, 1849
Offset: 0
Keywords
Examples
The P-positions with the total of 4 are permutations of (0,0,2,2) and (1,1,1,1). Therefore, a(2)=7.
Links
- T. Khovanova and J. Xiong, Nim Fractals, arXiv:1405.594291 [math.CO] (2014), p. 16 and J. Int. Seq. 17 (2014) # 14.7.8.
Programs
-
Mathematica
Table[Length[ Select[Flatten[ Table[{n, k, j, BitXor[n, k, j]}, {n, 0, a}, {k, 0, a}, {j, 0, a}], 2], Total[#] == a &]], {a, 0, 100, 2}]
Formula
a(2n+1) = 6a(n), a(2n+2) = a(n+1) + a(n).
G.f.: Product_{k>=0} (1 + 6*x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Mar 16 2021
Comments