cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237716 7-distance Pell sequence.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5, 7, 7, 9, 13, 15, 23, 25, 37, 39, 55, 65, 85, 111, 135, 185, 213, 295, 343, 465, 565, 735, 935, 1161, 1525, 1847, 2455, 2977, 3925, 4847, 6247, 7897, 9941, 12807, 15895, 20657, 25589, 33151, 41383, 53033, 66997
Offset: 0

Views

Author

Sergio Falcon, Feb 12 2014

Keywords

Examples

			a(7)=2a(0)+a(5)=3; a(8)=2a(1)+a(6)=3; a(9)=2a(2)+a(7)=5.
		

Crossrefs

Programs

  • Mathematica
    For[j = 0, j < 7, j++, a[j] = 1]
    For[j = 7, j < 51, j++, a[j] = 2 a[j - 7] + a[j - 2]]
    Table[a[j], {j, 0, 50}]
    CoefficientList[Series[(1 + x)/(1 - x^2 - 2 x^7), {x,0,50}], x] (* G. C. Greubel, May 01 2017 *)
  • PARI
    Vec((1+x)/(1-x^2-2*x^7)+O(x^99)) \\ Charles R Greathouse IV, Mar 06 2014

Formula

a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1; a(n) = 2*a(n-7) + a(n-2) for n>=7.
G.f.: (1 + x)/(1 - x^2 - 2*x^7).
a(2*n) = Sum_{j=0..n/7} binomial(n-5*j, 2*j)*2^(2*j) + Sum_{j=0..(n-4)/7} binomial(n-3-5*j, 2*j+1)*2^(2*j+1).
a(2*n+1) = Sum_{j=0..n/7} binomial(n-5*j, 2*j)*2^(2*j) + Sum_{j=0..(n-3)/7} binomial(n-2-5*j, 2*j+1)*2^(2*j+1).