cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237739 a(0) = 1, a(2n) = nthcomposite(a(n)-1), a(2n+1) = nthprime(a(n)), where nthcomposite = A002808, nthprime = A000040.

Original entry on oeis.org

1, 2, 4, 3, 8, 7, 6, 5, 14, 19, 12, 17, 10, 13, 9, 11, 22, 43, 28, 67, 20, 37, 26, 59, 16, 29, 21, 41, 15, 23, 18, 31, 33, 79, 60, 191, 40, 107, 91, 331, 30, 71, 52, 157, 38, 101, 81, 277, 25, 53, 42, 109, 32, 73, 57, 179, 24, 47, 34, 83, 27, 61, 45, 127, 48
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 30 2014

Keywords

Comments

A071574(a(n)) = n; a(A071574(n)) = n for n > 0.

Crossrefs

Inverse: A071574.
Compare also to the permutation A246378.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a237739 = fromIntegral . (+ 1) . fromJust . (`elemIndex` a071574_list)
    
  • PARI
    default(primelimit,(2^31)+(2^30));
    A002808(n) = { my(k=-1); while( -n + n += -k + k=primepi(n), ); n }; \\ This function from M. F. Hasler
    A237739(n) = if(0==n, 1, if(!(n%2), A002808(A237739(n/2)-1), prime(A237739((n-1)/2))));
    for(n=0, 4095, write("b237739.txt", n, " ", A237739(n)));
    \\ Antti Karttunen, Apr 04 2015
    
  • Scheme
    ;; With memoizing definec-macro.
    (definec (A237739 n) (cond ((zero? n) 1) ((odd? n) (A000040 (A237739 (/ (- n 1) 2)))) (else (A002808 (+ -1 (A237739 (/ n 2)))))))
    ;; Antti Karttunen, Apr 04 2015

Formula

a(0) = 1, a(2n) = nthcomposite(a(n)-1), a(2n+1) = nthprime(a(n)), where nthcomposite = A002808, nthprime = A000040. - Antti Karttunen, Apr 04 2015

Extensions

Name replaced by an explicit recurrence. - Antti Karttunen, Apr 04 2015