A237739 a(0) = 1, a(2n) = nthcomposite(a(n)-1), a(2n+1) = nthprime(a(n)), where nthcomposite = A002808, nthprime = A000040.
1, 2, 4, 3, 8, 7, 6, 5, 14, 19, 12, 17, 10, 13, 9, 11, 22, 43, 28, 67, 20, 37, 26, 59, 16, 29, 21, 41, 15, 23, 18, 31, 33, 79, 60, 191, 40, 107, 91, 331, 30, 71, 52, 157, 38, 101, 81, 277, 25, 53, 42, 109, 32, 73, 57, 179, 24, 47, 34, 83, 27, 61, 45, 127, 48
Offset: 0
Links
- Reinhard Zumkeller (terms 0-300) & Antti Karttunen, Table of n, a(n) for n = 0..4095
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Haskell
import Data.List (elemIndex); import Data.Maybe (fromJust) a237739 = fromIntegral . (+ 1) . fromJust . (`elemIndex` a071574_list)
-
PARI
default(primelimit,(2^31)+(2^30)); A002808(n) = { my(k=-1); while( -n + n += -k + k=primepi(n), ); n }; \\ This function from M. F. Hasler A237739(n) = if(0==n, 1, if(!(n%2), A002808(A237739(n/2)-1), prime(A237739((n-1)/2)))); for(n=0, 4095, write("b237739.txt", n, " ", A237739(n))); \\ Antti Karttunen, Apr 04 2015
-
Scheme
;; With memoizing definec-macro. (definec (A237739 n) (cond ((zero? n) 1) ((odd? n) (A000040 (A237739 (/ (- n 1) 2)))) (else (A002808 (+ -1 (A237739 (/ n 2))))))) ;; Antti Karttunen, Apr 04 2015
Formula
a(0) = 1, a(2n) = nthcomposite(a(n)-1), a(2n+1) = nthprime(a(n)), where nthcomposite = A002808, nthprime = A000040. - Antti Karttunen, Apr 04 2015
Extensions
Name replaced by an explicit recurrence. - Antti Karttunen, Apr 04 2015
Comments