A237757 Number of partitions of n such that 2*(least part) = (number of parts).
0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 16, 18, 22, 25, 30, 35, 41, 47, 56, 64, 75, 86, 100, 114, 133, 151, 174, 198, 227, 257, 295, 333, 379, 428, 486, 547, 620, 696, 786, 882, 993, 1111, 1250, 1396, 1565, 1747, 1954, 2176, 2431, 2703, 3013
Offset: 1
Examples
a(8) = 2 counts these partitions: 71, 2222.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A237753.
Programs
-
Maple
f:= proc(n) local t, k, np; t:= 0; for k from 1 do np:= n - 1 - 2*k*(k-1); if np < 2*k-1 then return t fi; t:= t + combinat:-numbpart(np, 2*k-1) - combinat:-numbpart(np,2*k-2) od; end proc: map(f, [$1..100]); # Robert Israel, Jul 01 2020
-
Mathematica
z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Min[p] == Length[p]], {n, z}]
Formula
Conjectural g.f.: Sum_{n >= 0} q^(2*(n+1)^2)/Product_{k = 1..2*n+1} 1 - q^k. - Peter Bala, Feb 02 2021
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(7/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jan 22 2022