cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237757 Number of partitions of n such that 2*(least part) = (number of parts).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 16, 18, 22, 25, 30, 35, 41, 47, 56, 64, 75, 86, 100, 114, 133, 151, 174, 198, 227, 257, 295, 333, 379, 428, 486, 547, 620, 696, 786, 882, 993, 1111, 1250, 1396, 1565, 1747, 1954, 2176, 2431, 2703, 3013
Offset: 1

Views

Author

Clark Kimberling, Feb 13 2014

Keywords

Examples

			a(8) = 2 counts these partitions: 71, 2222.
		

Crossrefs

Cf. A237753.

Programs

  • Maple
    f:= proc(n) local t, k, np;
      t:= 0;
      for k from 1 do
        np:= n - 1 - 2*k*(k-1);
        if np < 2*k-1 then return t fi;
        t:= t + combinat:-numbpart(np, 2*k-1) - combinat:-numbpart(np,2*k-2)
      od;
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 01 2020
  • Mathematica
    z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Min[p] == Length[p]], {n, z}]

Formula

Conjectural g.f.: Sum_{n >= 0} q^(2*(n+1)^2)/Product_{k = 1..2*n+1} 1 - q^k. - Peter Bala, Feb 02 2021
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(7/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jan 22 2022