A237821 Number of partitions of n such that 2*(least part) <= greatest part.
0, 0, 1, 2, 4, 7, 11, 16, 25, 35, 48, 68, 92, 123, 164, 216, 282, 367, 471, 604, 769, 975, 1225, 1542, 1924, 2395, 2968, 3669, 4514, 5547, 6781, 8280, 10071, 12229, 14796, 17881, 21537, 25902, 31066, 37206, 44443, 53021, 63098, 74995, 88946, 105350, 124533
Offset: 1
Examples
a(6) = 7 counts these partitions: 51, 42, 411, 321, 3111, 2211, 21111. From _Gus Wiseman_, May 15 2023: (Start) The a(3) = 1 through a(8) = 16 partitions wirth 2*(least part) <= greatest part: (21) (31) (41) (42) (52) (211) (221) (51) (61) (311) (321) (331) (2111) (411) (421) (2211) (511) (3111) (2221) (21111) (3211) (4111) (22111) (31111) (211111) The a(3) = 1 through a(8) = 16 partitions with different median from maximum: (21) (31) (32) (42) (43) (211) (41) (51) (52) (311) (321) (61) (2111) (411) (322) (2211) (421) (3111) (511) (21111) (3211) (4111) (22111) (31111) (211111) (End)
Crossrefs
Programs
-
Mathematica
z = 60; q[n_] := q[n] = IntegerPartitions[n]; Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *) Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *) Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *) Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *) Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *)
Formula
G.f.: Sum_{i>=1} Sum_{j>=0} x^(3*i+j) /Product_{k=i..2*i+j} (1-x^k). - Seiichi Manyama, May 27 2023
Comments