cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237824 Number of partitions of n such that 2*(least part) >= greatest part.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 10, 11, 13, 14, 19, 18, 23, 25, 29, 30, 38, 37, 46, 48, 54, 57, 70, 69, 80, 85, 97, 100, 118, 118, 137, 144, 159, 168, 193, 195, 220, 233, 259, 268, 303, 311, 348, 367, 399, 419, 469, 483, 532, 560, 610, 639, 704, 732, 801, 841, 908, 954
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Comments

By conjugation, also the number of integer partitions of n whose greatest part appears at a middle position, namely at k/2, (k+1)/2, or (k+2)/2 where k is the number of parts. These partitions have ranks A362622. - Gus Wiseman, May 14 2023

Examples

			a(6) = 7 counts these partitions:  6, 42, 33, 222, 2211, 21111, 111111.
From _Gus Wiseman_, May 14 2023: (Start)
The a(1) = 1 through a(8) = 10 partitions such that 2*(least part) >= greatest part:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (211)   (221)    (42)      (322)      (53)
                    (1111)  (2111)   (222)     (2221)     (332)
                            (11111)  (2211)    (22111)    (422)
                                     (21111)   (211111)   (2222)
                                     (111111)  (1111111)  (22211)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
The a(1) = 1 through a(8) = 10 partitions whose greatest part appears at a middle position:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (2211)    (2221)     (332)
                                     (111111)  (1111111)  (2222)
                                                          (3311)
                                                          (22211)
                                                          (11111111)
(End)
		

Crossrefs

The complement is counted by A237820, ranks A362982.
For modes instead of middles we have A362619, counted by A171979.
These partitions have ranks A362981.
A000041 counts integer partitions, strict A000009.
A325347 counts partitions with integer median, complement A307683.

Programs

  • Mathematica
    z = 60; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}]  (* A237820 *)
    Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
    Table[Count[q[n], p_ /; 2 Min[p] == Max[p]], {n, z}] (* A118096 *)
    Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}]  (* A053263 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* this sequence *)
    (* or *)
    nmax = 100; Rest[CoefficientList[Series[Sum[x^k/Product[1 - x^j, {j,k,2*k}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 13 2025 *)
    (* or *)
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax+1)]; s += x^k/(1 - x^k)/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 14 2025 *)
  • PARI
    N=60; x='x+O('x^N);
    gf = sum(m=1, N, (x^m)/(1-x^m)) + sum(i=1, N, sum(j=1, i, x^((2*i)+j)/prod(k=0, j, 1 - x^(k+i))));
    Vec(gf) \\ John Tyler Rascoe, Mar 07 2024

Formula

G.f.: Sum_{m>0} x^m/(1-x^m) + Sum_{i>0} Sum_{j=1..i} x^((2*i)+j) / Product_{k=0..j} (1 - x^(k+i)). - John Tyler Rascoe, Mar 07 2024
G.f.: Sum_{k>=1} x^k / Product_{j=k..2*k} (1 - x^j). - Vaclav Kotesovec, Jun 13 2025
a(n) ~ phi^(3/2) * exp(Pi*sqrt(2*n/15)) / (5^(1/4) * sqrt(2*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 14 2025