A237827 Number of partitions of n such that 5*(least part) = greatest part.
0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 13, 19, 24, 32, 39, 52, 61, 77, 93, 114, 133, 164, 188, 226, 261, 309, 353, 417, 471, 549, 622, 717, 808, 933, 1042, 1191, 1334, 1516, 1690, 1921, 2131, 2407, 2674, 3006, 3330, 3744, 4135, 4628, 5116, 5708, 6294, 7020
Offset: 1
Examples
a(8) = 2 counts these partitions: 521, 5111.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
Programs
-
Mathematica
z = 64; q[n_] := q[n] = IntegerPartitions[n]; Table[Count[q[n], p_ /; 3 Min[p] = = Max[p]], {n, z}] (* A237825*) Table[Count[q[n], p_ /; 4 Min[p] = = Max[p]], {n, z}] (* A237826 *) Table[Count[q[n], p_ /; 5 Min[p] = = Max[p]], {n, z}] (* A237827 *) Table[Count[q[n], p_ /; 2 Min[p] + 1 = = Max[p]], {n, z}] (* A237828 *) Table[Count[q[n], p_ /; 2 Min[p] - 1 = = Max[p]], {n, z}] (* A237829 *) (* Second program: *) kmax = 54; Sum[x^(6 k)/Product[1 - x^j, {j, k, 5 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
-
PARI
my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k)/prod(j=k, 5*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023
Formula
G.f.: Sum_{k>=1} x^(6*k)/Product_{j=k..5*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * d^sqrt(n) / sqrt(n), where d = 5.4930955... and c = 0.135509... - Vaclav Kotesovec, Jun 19 2025