cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237833 Number of partitions of n such that (greatest part) - (least part) > number of parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 4, 7, 10, 16, 20, 31, 41, 56, 74, 101, 129, 172, 219, 284, 362, 463, 579, 735, 918, 1147, 1422, 1767, 2172, 2680, 3279, 4013, 4888, 5947, 7200, 8721, 10515, 12663, 15202, 18235, 21798, 26039, 31015, 36898, 43802, 51930, 61426, 72590
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 4 counts these partitions:  7+1, 6+2, 6+1+1, 5+2+1.
		

Crossrefs

Different from, but has the same beginning as, A275633.

Programs

  • Maple
    isA237833 := proc(p)
        if abs(p[1]-p[-1]) > nops(p) then
            return 1;
        else
            return 0;
        end if;
    end proc:
    A237833 := proc(n)
        local a,p;
        a := 0 ;
        p := combinat[firstpart](n) ;
        while true do
            a := a+isA237833(p) ;
            if nops(p) = 1 then
                break;
            end if;
            p := nextpart(p) ;
        end do:
        return a;
    end proc:
    seq(A237833(n),n=1..20) ; # R. J. Mathar, Nov 17 2017
  • Mathematica
    z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p];
    Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}]  (* A237830 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A237831 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A237832 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}]  (* A237833 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A237834 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^k*(k-1)*(x^(k*(3*k-1)/2)+x^(k*(3*k+1)/2))))) \\ Seiichi Manyama, May 20 2023

Formula

A237831(n) + a(n) = A000041(n). - R. J. Mathar, Nov 24 2017
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^k * (k-1) * ( x^(k*(3*k-1)/2) + x^(k*(3*k+1)/2) ). (See Andrews' preprint.) - Seiichi Manyama, May 20 2023