A237833 Number of partitions of n such that (greatest part) - (least part) > number of parts.
0, 0, 0, 0, 1, 1, 3, 4, 7, 10, 16, 20, 31, 41, 56, 74, 101, 129, 172, 219, 284, 362, 463, 579, 735, 918, 1147, 1422, 1767, 2172, 2680, 3279, 4013, 4888, 5947, 7200, 8721, 10515, 12663, 15202, 18235, 21798, 26039, 31015, 36898, 43802, 51930, 61426, 72590
Offset: 1
Examples
a(8) = 4 counts these partitions: 7+1, 6+2, 6+1+1, 5+2+1.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..96 from R. J. Mathar)
- George E. Andrews, 4-Shadows in q-Series and the Kimberling Index, Preprint, May 15, 2016.
Crossrefs
Programs
-
Maple
isA237833 := proc(p) if abs(p[1]-p[-1]) > nops(p) then return 1; else return 0; end if; end proc: A237833 := proc(n) local a,p; a := 0 ; p := combinat[firstpart](n) ; while true do a := a+isA237833(p) ; if nops(p) = 1 then break; end if; p := nextpart(p) ; end do: return a; end proc: seq(A237833(n),n=1..20) ; # R. J. Mathar, Nov 17 2017
-
Mathematica
z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p]; Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}] (* A237830 *) Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A237831 *) Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A237832 *) Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}] (* A237833 *) Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A237834 *)
-
PARI
my(N=50, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^k*(k-1)*(x^(k*(3*k-1)/2)+x^(k*(3*k+1)/2))))) \\ Seiichi Manyama, May 20 2023
Formula
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^k * (k-1) * ( x^(k*(3*k-1)/2) + x^(k*(3*k+1)/2) ). (See Andrews' preprint.) - Seiichi Manyama, May 20 2023